基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训...基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训练模型在训练集上学习最优的提示模板;其次,将提示模板与输入文本结合,使分类任务转化为完形填空任务;同时利用外部知识扩充标签词空间,丰富标签词的语义信息;最后,对预测的标签词与原始的标签进行映射。通过在THUCNews、SHNews和Toutiao这3个新闻数据集上进行随机采样,形成小样本训练集和验证集进行实验。实验结果表明,所提方法在上述数据集上的1-shot、5-shot、10-shot和20-shot任务上整体表现有所提升,尤其在1-shot任务上提升效果突出,与基线小样本分类方法相比,准确率分别提高了7.59、2.11和3.10个百分点以上,验证了KPL在小样本新闻主题分类任务上的有效性。展开更多
为了提高雾与能见度的预报水平,对业务上常用的两种能见度诊断方案,即Stoelinga and Warner(SW)方案与Forecast Systems Laboratory(FSL)方案的改进进行预报试验,SW方案基于Gultepe方案考虑了液态水粒子数浓度对能见度的影响,FSL改进方...为了提高雾与能见度的预报水平,对业务上常用的两种能见度诊断方案,即Stoelinga and Warner(SW)方案与Forecast Systems Laboratory(FSL)方案的改进进行预报试验,SW方案基于Gultepe方案考虑了液态水粒子数浓度对能见度的影响,FSL改进方案中利用了递减平均法对公式中用到的温度与露点温度进行订正,并用其重新计算公式中的相对湿度。基于山东省气象科学研究所逐时更新循环(hourly update cycle,HUC)业务模式输出结果,从2015—2016年选取10次雾天气过程,并详细分析了2015年11月13—14日这次雾天气过程的预报结果,比较了改进前后各方案对雾与能见度的预报效果,结果显示:在模式预报的雨水含量占总液态含水量比例较大的预报时效,改进后的SW方案对雾与能见度预报效果优于原始方案,在模式预报液态含水量接近0的预报时效,改进前后的SW方案对雾与能见度的预报效果相当;利用订正的温度与露点温度重新计算相对湿度,其平均绝对误差(mean absolute error,MAE)降低明显的预报时段,改进后的FSL方案对雾与能见度的预报效果大大提升。将两种改进后的方案相融合并进行预报试验,结果显示,综合对能见度与雾的预报效果,Combined Visibility(CVIS)方案要优于其他两种改进方案。展开更多
文摘基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训练模型在训练集上学习最优的提示模板;其次,将提示模板与输入文本结合,使分类任务转化为完形填空任务;同时利用外部知识扩充标签词空间,丰富标签词的语义信息;最后,对预测的标签词与原始的标签进行映射。通过在THUCNews、SHNews和Toutiao这3个新闻数据集上进行随机采样,形成小样本训练集和验证集进行实验。实验结果表明,所提方法在上述数据集上的1-shot、5-shot、10-shot和20-shot任务上整体表现有所提升,尤其在1-shot任务上提升效果突出,与基线小样本分类方法相比,准确率分别提高了7.59、2.11和3.10个百分点以上,验证了KPL在小样本新闻主题分类任务上的有效性。
文摘为了提高雾与能见度的预报水平,对业务上常用的两种能见度诊断方案,即Stoelinga and Warner(SW)方案与Forecast Systems Laboratory(FSL)方案的改进进行预报试验,SW方案基于Gultepe方案考虑了液态水粒子数浓度对能见度的影响,FSL改进方案中利用了递减平均法对公式中用到的温度与露点温度进行订正,并用其重新计算公式中的相对湿度。基于山东省气象科学研究所逐时更新循环(hourly update cycle,HUC)业务模式输出结果,从2015—2016年选取10次雾天气过程,并详细分析了2015年11月13—14日这次雾天气过程的预报结果,比较了改进前后各方案对雾与能见度的预报效果,结果显示:在模式预报的雨水含量占总液态含水量比例较大的预报时效,改进后的SW方案对雾与能见度预报效果优于原始方案,在模式预报液态含水量接近0的预报时效,改进前后的SW方案对雾与能见度的预报效果相当;利用订正的温度与露点温度重新计算相对湿度,其平均绝对误差(mean absolute error,MAE)降低明显的预报时段,改进后的FSL方案对雾与能见度的预报效果大大提升。将两种改进后的方案相融合并进行预报试验,结果显示,综合对能见度与雾的预报效果,Combined Visibility(CVIS)方案要优于其他两种改进方案。