期刊文献+
共找到134篇文章
< 1 2 7 >
每页显示 20 50 100
Exact Traveling Wave Solutions to Phi-4 Equation and Joseph-Egri (TRLW) Equation and Calogro-Degasperis (CD) Equation by Modified (G'/G2)-Expansion Method
1
作者 Maha Al-Harbi Waleed Al-Hamdan Luwai Wazzan 《Journal of Applied Mathematics and Physics》 2023年第7期2103-2120,共18页
In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 eq... In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters. 展开更多
关键词 Exact Solutions Modified (g'/g2)-expansion method Phi-4 Equation Joseph-Egri (TRLW) Equation Calogro-Degasperis (CD) Equation
下载PDF
自牺牲法合成氮空位g-C_(3)N_(4)/Cu_(2)(OH)_(2)CO_(3)异质结及其广谱光固氮性能
2
作者 梁红玉 王斌 +1 位作者 陆光 商丽艳 《材料导报》 EI CAS CSCD 北大核心 2024年第16期62-67,共6页
本研究采用原位自牺牲法合成了N空位掺杂的g-C_(3)N_(4)/Cu_(2)(OH)_(2)CO_(3)(VCN/Cu)异质结催化剂,该催化剂体现出优异的可见-近红外宽光谱驱动性。实验结果表明,g-C_(3)N_(4)与Cu_(2)(OH)_(2)CO_(3)之间的电荷迁移遵循“Z”型机制。... 本研究采用原位自牺牲法合成了N空位掺杂的g-C_(3)N_(4)/Cu_(2)(OH)_(2)CO_(3)(VCN/Cu)异质结催化剂,该催化剂体现出优异的可见-近红外宽光谱驱动性。实验结果表明,g-C_(3)N_(4)与Cu_(2)(OH)_(2)CO_(3)之间的电荷迁移遵循“Z”型机制。氮空位的存在抑制了电荷载流子的重组,降低了界面电荷转移的能量屏障,对N 2和O_(2)的吸附和活化激发了固氮还原反应的进行,并提供了更多的反应活性位点。体系中甲醇作为空穴清除剂时O_(2)的添加对制备的催化剂的光固氮性能有显著的促进作用,在50%O_(2)和50%N_(2)混合气氛下VCN/Cu异质结催化剂的铵离子产率高达14.52 mg·L^(-1)·h^(-1)·g^(-1),是纯N 2气氛下的2.7倍,且按照“三线”光固氮机理运行。本研究为低耗、绿色环保固氮工艺提供了一条新途径。 展开更多
关键词 石墨相氮化碳 碱式碳酸铜 光催化固氮 氮空位 自牺牲法
下载PDF
金属有机骨架和g-C_(3)N_(4)共掺杂改性TiO_(2)光催化性能
3
作者 李宁 臧书杰 +1 位作者 蒋托红 赵鹬 《精细化工》 EI CAS CSCD 北大核心 2024年第9期1941-1948,共8页
以钛酸四丁酯、三聚氰胺、二甲基咪唑和Co(NO_(3))_(2)•6H_(2)O为原料,采用溶胶-凝胶法、高温煅烧法,将类石墨相氮化碳(g-C_(3)N_(4))和二甲基咪唑钴(ZIF-67)与TiO_(2)共掺杂,制备了TiO_(2)-g-C_(3)N_(4)-ZIF-67光催化剂。采用XRD、XPS... 以钛酸四丁酯、三聚氰胺、二甲基咪唑和Co(NO_(3))_(2)•6H_(2)O为原料,采用溶胶-凝胶法、高温煅烧法,将类石墨相氮化碳(g-C_(3)N_(4))和二甲基咪唑钴(ZIF-67)与TiO_(2)共掺杂,制备了TiO_(2)-g-C_(3)N_(4)-ZIF-67光催化剂。采用XRD、XPS、SEM和紫外-可见漫反射光谱(UV-Vis DRS)对TiO_(2)-g-C_(3)N_(4)-ZIF-67进行了表征,对TiO_(2)-g-C_(3)N_(4)-ZIF-67光催化降解甲基橙的催化活性进行了评价,并对其催化机理进行了推测。结果表明,TiO_(2)-g-C_(3)N_(4)-ZIF-67同时包含锐钛矿及少量金红石相TiO_(2)、g-C_(3)N_(4)及ZIF-67;g-C_(3)N_(4)的加入使TiO_(2)的带隙降至2.45 eV,ZIF-67将带隙进一步降至1.91 eV;g-C_(3)N_(4)和ZIF-67的共掺杂降低了带隙,显著提高了TiO_(2)可见光吸收范围(492~649 nm);TiO_(2)-g-C_(3)N_(4)-ZIF-67形成了Ⅱ型异质结,TiO_(2)-g-C_(3)N_(4)与金属有机骨架的结合增强了TiO_(2)光催化降解甲基橙的能力。Co质量分数21.5%的TiO_(2)-g-C_(3)N_(4)-ZIF-67-2具有最佳的光催化降解甲基橙活性,在可见光照射40 min时,甲基橙降解率可达79.92%,3次循环后甲基橙降解率为58.86%(90 min),光催化反应对ZIF-67的结晶度有所影响,进而影响了循环时的光催化活性。 展开更多
关键词 光催化 溶胶-凝胶法 高温煅烧法 TiO_(2) g-C_(3)N_(4) ZIF-67 功能材料
下载PDF
Bi_(2)WO_(6)/g-C_(3)N_(4)复合光催化剂的制备及其光催化性能研究 被引量:1
4
作者 韩碧波 刘世凯 +3 位作者 宋志健 王嘉琳 吴昊承 闫国晋 《现代化工》 CAS CSCD 北大核心 2024年第4期175-179,共5页
以尿素、硝酸铋、钨酸钠等为主要原料,在热缩聚法制备g-C_(3)N_(4)的基础上,通过水热法制备Bi_(2)WO_(6)/g-C_(3)N_(4)复合光催化剂。在模拟太阳光照射下,研究Bi_(2)WO_(6)/g-C_(3)N_(4)复合光催化剂对甲基橙的光催化降解性能。结果表明... 以尿素、硝酸铋、钨酸钠等为主要原料,在热缩聚法制备g-C_(3)N_(4)的基础上,通过水热法制备Bi_(2)WO_(6)/g-C_(3)N_(4)复合光催化剂。在模拟太阳光照射下,研究Bi_(2)WO_(6)/g-C_(3)N_(4)复合光催化剂对甲基橙的光催化降解性能。结果表明,复合光催化剂相比于单体光催化剂的性能有显著提高。在Bi_(2)WO_(6)与g-C_(3)N_(4)质量比为2∶1、水热温度为180℃、水热时间为12 h条件下,复合光催化剂的性能最好。光照时间210 min时,甲基橙降解率达到了98.15%,相比于单体Bi_(2)WO_(6)和g-C_(3)N_(4)光催化剂的效率分别提高了25.1%和37.7%,且光催化降解过程符合一级动力学方程。复合光催化剂具有优异的稳定性,经过4次重复性实验,甲基橙降解率仍达到95.17%。 展开更多
关键词 g-C_(3)N_(4) Bi_(2)WO_(6) 水热法 光催化 甲基橙
下载PDF
Comment on “Application of the (G'/G)-Expansion Method for Nonlinear Evolution Equations”[Phys.Lett.A 372 (2008) 3400] 被引量:3
5
作者 ZHU Peng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第8期206-208,共3页
In this paper,some travelling wave solutions involving parameters of the Modified Zakharov-Kuznetsovequation [Phys.Lett.A 372 (2008) 3400] are investigated.We will show that these solutions are not new travellingwave ... In this paper,some travelling wave solutions involving parameters of the Modified Zakharov-Kuznetsovequation [Phys.Lett.A 372 (2008) 3400] are investigated.We will show that these solutions are not new travellingwave solutions. 展开更多
关键词 (g'/g)-expansion method travelling wave solutions Modified Zakharov-Kuznetsov equation
下载PDF
Zr基MOFs材料UiO-66-NH_(2)负载g-C_(3)N_(4)催化剂的制备及光催化性能
6
作者 刘思乐 洪雯雯 +2 位作者 单译 回梁川 张磊 《印染》 CAS 北大核心 2024年第3期15-19,共5页
通过溶剂热法制备了UiO-66-NH_(2)/g-C_(3)N_(4)催化剂,以甲基橙(MO)染料溶液为模拟污染物,研究可见光照射下UiO-66-NH_(2)/g-C_(3)N_(4)光催化活性和循环使用稳定性。结果表明:UiO-66-NH_(2)均匀地负载在层状g-C_(3)N_(4)表面,UiO-66-N... 通过溶剂热法制备了UiO-66-NH_(2)/g-C_(3)N_(4)催化剂,以甲基橙(MO)染料溶液为模拟污染物,研究可见光照射下UiO-66-NH_(2)/g-C_(3)N_(4)光催化活性和循环使用稳定性。结果表明:UiO-66-NH_(2)均匀地负载在层状g-C_(3)N_(4)表面,UiO-66-NH_(2)与g-C_(3)N_(4)形成Ⅱ型异质结,抑制了光生电子-空穴的复合;当催化剂质量浓度为1.25 g/L时,其对MO的光催化降解率达到了95.6%,催化剂循环使用5次后其对MO的光催化降解率仍达到了85.2%。 展开更多
关键词 UiO-66-NH_(2)/g-C_(3)N_(4) 甲基橙 光催化降解 溶剂热法 MOFS 层状多孔
下载PDF
g-C_(3)N_(4)/TiO_(2)/RGO三元复合材料的制备及催化果糖脱水制5-羟甲基糠醛的研究
7
作者 邵梦莎 洪雯雯 +3 位作者 刘思乐 张申奥 王思祺 李金源 《化工科技》 CAS 2024年第3期18-25,共8页
采用水热法制备g-C_(3)N_(4)/TiO_(2)/RGO三元复合材料,并将其应用于果糖脱水制备5-羟甲基糠醛(5-HMF)。利用SEM、TEM、XRD、FTIR、BET等检测手段对g-C_(3)N_(4)/TiO_(2)/RGO三元复合材料的形貌、晶型、基团和比表面积进行了表征,同时... 采用水热法制备g-C_(3)N_(4)/TiO_(2)/RGO三元复合材料,并将其应用于果糖脱水制备5-羟甲基糠醛(5-HMF)。利用SEM、TEM、XRD、FTIR、BET等检测手段对g-C_(3)N_(4)/TiO_(2)/RGO三元复合材料的形貌、晶型、基团和比表面积进行了表征,同时研究了反应温度、反应时间、催化剂用量及溶剂种类对果糖转化率、5-HMF的收率和选择性的影响,此外,还考察了催化剂的稳定性。结果表明,g-C_(3)N_(4)/TiO_(2)/RGO三元复合材料具有三维立体网状结构,比表面积达到了31.4782 m^(2)/g,对果糖脱水反应具有良好的催化活性;在果糖质量为5.0 g、二甲基亚砜用量15 mL、g-C_(3)N_(4)/TiO_(2)/RGO用量1.0 g、反应时间3 h、反应温度150℃的条件下,果糖的转化率为98.5%,5-HMF的收率为69.7%,选择性为70.8%;5次循环使用后,5-HMF的收率仍能达到58.8%,表明g-C_(3)N_(4)/TiO_(2)/RGO三元复合材料的催化稳定性良好。 展开更多
关键词 g-C_(3)N_(4)/TiO_(2)/RgO三元复合材料 水热法 5-羟甲基糠醛 果糖
下载PDF
Exact Solutions of (2+1)-Dimensional Boiti-Leon-Pempinelle Equation with (G'/G)-Expansion Method
8
作者 熊守全 夏铁成 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第7期35-37,共3页
In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with thr... In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations. 展开更多
关键词 2+1)-dimensional Boiti-Leon-Pempinelle equation g′/g)-expansion method hyperbolic function solutions trigonometric function solutions
下载PDF
玻纤负载TiO_(2)/g-C_(3)N_(4)光催化膜的制备及降解染料性能 被引量:2
9
作者 高海燕 安仁德 赵永男 《天津工业大学学报》 CAS 北大核心 2023年第6期47-53,共7页
为解决光催化剂效率不高、粉末难回收且易造成二次污染等问题,采用浸渍法制备了玻璃纤维负载TiO_(2)/gC_(3)N_(4)光催化膜(命名为TCNGF)。TiO_(2)和g-C_(3)N_(4)纳米颗粒通过静电自组装在玻璃纤维表面形成了均匀无裂痕的薄膜,重量法测... 为解决光催化剂效率不高、粉末难回收且易造成二次污染等问题,采用浸渍法制备了玻璃纤维负载TiO_(2)/gC_(3)N_(4)光催化膜(命名为TCNGF)。TiO_(2)和g-C_(3)N_(4)纳米颗粒通过静电自组装在玻璃纤维表面形成了均匀无裂痕的薄膜,重量法测得催化剂负载量(质量分数)为4%。降解实验结果表明:以TCNGF为催化剂,在模拟太阳光下,10 mg/L的罗丹明B(RhB)溶液在40 min的降解率达到98%,4次循环降解实验的脱色降解率均高于99%,且溶液中无絮状沉淀产生,表明催化剂优异的催化活性、附着牢度和循环稳定性。催化结果表明:适量提高TiO_(2)和g-C_(3)N_(4)的质量比,催化膜内异质结量增多,促使光生活性自由基增多,染料降解速率增快;初始染料浓度对TCNGF光催化降解性能无明显影响。自由基捕获实验证明:超氧自由基(·O_(2)~-)和羟基自由基(·OH)在光催化反应过程中为主要活性物种;光催化反应机理研究表明,TCNGF属于Z型光催化体系。 展开更多
关键词 浸渍法 TiO_(2) g-C_(3)N_(4) 玻璃纤维 光催化剂 染料降解 光催化膜
下载PDF
A novel (G'/G)-expansion method and its application to the Boussinesq equation 被引量:15
10
作者 Md.Nur Alam Md.Ali Akbar Syed Tauseef Mohyud-Din 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期34-43,共10页
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B... In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves. 展开更多
关键词 (g'/g)-expansion method Boussinesq equation solitary wave solutions auxiliary nonlinear ordinary differential equation
下载PDF
The (ω/g)-expansion method and its application to Vakhnenko equation 被引量:9
11
作者 李文安 陈浩 张国才 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期400-404,共5页
This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of ... This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of (G'/G)-expansion given by Wang et al recently. As an application of this new method, we study the well-known Vakhnenko equation which describes the propagation of high-frequency waves in a relaxing medium. With two new expansions, general types of soliton solutions and periodic solutions for Vakhnenko equation are obtained. 展开更多
关键词 (w/g)-expansion method Vakhnenko equation travelling wave solutions
下载PDF
Exact solutions of nonlinear fractional differential equations by (G'/G)-expansion method 被引量:6
12
作者 Ahmet Bekir zkan Güner 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期140-145,共6页
In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is prop... In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann-Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations. 展开更多
关键词 (g'/g)-expansion method time-fractional Burgers equation fractional-order biological popula-tion model space-time fractional Whitham-Broer-Kaup equations
下载PDF
The (G'/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations 被引量:13
13
作者 LI Ling-xiao LI Er-qiang WANG Ming-liang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期454-462,共9页
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present... The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves. 展开更多
关键词 The (g /g 1/g)-expansion method travelling wave solutions homogeneous balance solitary wave solutions Zakharov equations.
下载PDF
A connection between the(G'/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation 被引量:3
14
作者 赵银龙 柳银萍 李志斌 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期41-46,共6页
Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain... Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method. 展开更多
关键词 g′/g)-expansion method truncated Painlev'e expansion method mKdV equation trav-eling wave solutions
下载PDF
Exact Solution to Nonlinear Differential Equations of Fractional Order via (<i>G’</i>/<i>G</i>)-Expansion Method 被引量:4
15
作者 Muhammad Younis Asim Zafar 《Applied Mathematics》 2014年第1期1-6,共6页
In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented t... In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential Equations into nonlinear ordinary differential Equations. Afterwards, the (G'/G)-expansion method has been implemented, to celebrate the exact solutions of these Equations, in the sense of modified Riemann-Liouville derivative. As application, the exact solutions of time-space fractional Burgers’ Equation have been discussed. 展开更多
关键词 EXACT Solution to Nonlinear Differential Equations of Fractional Order VIA (g’/g)-expansion method
下载PDF
(G'/G)-Expansion Method Equivalent to Extended Tanh Function Method 被引量:1
16
作者 LIU Chun-Ping 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期985-988,共4页
In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The trav... In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method. 展开更多
关键词 g′/g)-expansion method extended tanh function method Riccati equation KdV equation
下载PDF
An Innovative Solutions for the Generalized FitzHugh-Nagumo Equation by Using the Generalized (G'/G)-Expansion Method 被引量:1
17
作者 Sayed Kahlil Elagan Mohamed Sayed Yaser Salah Hamed 《Applied Mathematics》 2011年第4期470-474,共5页
In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special param... In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special parameter where satisfies a second order linear differential equation , , where and are functions of . 展开更多
关键词 FitzHugh-Nagumo EQUATION generalized (g'/g)-expansion method TRAVELINg Wave Solutions
下载PDF
General Solution of Two Generalized Form of Burgers Equation by Using the (<i>G</i><sup>'</sup>/<i>G</i>)-Expansion Method 被引量:1
18
作者 Abdollah Borhanifar Reza Abazari 《Applied Mathematics》 2012年第2期158-168,共11页
In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burger... In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burgers-KdV) and Burger-Fisher equations. Our work is motivated by the fact that the (G'/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system. 展开更多
关键词 (g'/g)-expansion method gENERALIZED Burgers-KdV EQUATION gENERALIZED Burgers-Fisher EQUATION Hyperbolic FUNCTION SOLUTIONS Trigonometric FUNCTION SOLUTIONS
下载PDF
Analytical Treatment of the Evolutionary (1 + 1)-Dimensional Combined KdV-mKdV Equation via the Novel (G'/G)-Expansion Method 被引量:1
19
作者 Md. Nur Alam Fethi Bin Muhammad Belgacem M. Ali Akbar 《Journal of Applied Mathematics and Physics》 2015年第12期1571-1579,共9页
The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave sol... The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the novel (G'/G)-expansion method. Consequently, various traveling wave solutions patterns including solitary wave solutions, periodic solutions, and kinks are detected and exhibited. 展开更多
关键词 Novel (g'/g)-expansion method (1 + 1)-Dimensional COMBINED KdV-mKdV EQUATION Kink Patterns Nonlinear Evolution EQUATION Solitary WAVE SOLUTIONS Traveling WAVE SOLUTIONS
下载PDF
Exact solutions of the nonlinear differential-difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete(G'/G)-expansion method
20
作者 Sadou Abdoulkary Alidou Mohamadou +1 位作者 Ousmanou Dafounansou Serge Yamigno Doka 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期117-123,共7页
We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve ... We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions. 展开更多
关键词 nonlinear transmission line discrete(g /g)-expansion method solitary waves
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部