期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进的粒子群算法用于图像分割 被引量:2
1
作者 苏彩红 吴菁 朱学峰 《佛山科学技术学院学报(自然科学版)》 CAS 2007年第3期15-18,共4页
提出了一种将保证收敛粒子群算法与最大类间方差法相结合的快速阈值分割法。该方法根据最大类间方差法的原理以分离度大小作为判断粒子优劣的准则,即分离度越大粒子就越好,并采用粒子群算法对图像进行多目标优化搜索。实验表明,该算法... 提出了一种将保证收敛粒子群算法与最大类间方差法相结合的快速阈值分割法。该方法根据最大类间方差法的原理以分离度大小作为判断粒子优劣的准则,即分离度越大粒子就越好,并采用粒子群算法对图像进行多目标优化搜索。实验表明,该算法在继承标准粒子群算法易于实现、实时性好等优点的同时,还避免了标准PSO算法存在的早熟收敛问题,具有更强的寻优能力。 展开更多
关键词 GCPS0 最大类间方差法 阈值分割
下载PDF
Multilayered feed forward neural network based on particle swarmopti mizer algorithm
2
作者 潘峰 陈杰 +1 位作者 涂序彦 付继伟 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期682-686,共5页
BP is a commonly used neural network training method, which has some disadvantages, such as local minima, sensitivity of initial value of weights, total dependence on gradient information. This paper presents some met... BP is a commonly used neural network training method, which has some disadvantages, such as local minima, sensitivity of initial value of weights, total dependence on gradient information. This paper presents some methods to train a neural network, including standard particle swarm optimizer (PSO), guaranteed convergence particle swarm optimizer (GCPSO), an improved PSO algorithm, and GCPSO-BP, an algorithm combined GCPSO with BP. The simulation results demonstrate the effectiveness of the three algorithms for neural network training. 展开更多
关键词 BP PSO guaranteed convergence particle swarm optimizer (gcpso) gcpso-BP.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部