In order to explore the transport properties of nonsymmetric three-terminal T-shaped graphene nanoribbons (GNRs) devices,the nonequilibrium Green's function method and Landauer-Buttiker formula were adopted. It sh...In order to explore the transport properties of nonsymmetric three-terminal T-shaped graphene nanoribbons (GNRs) devices,the nonequilibrium Green's function method and Landauer-Buttiker formula were adopted. It shows that the transport properties of T-shaped GNRs are highly sensitive to the details of the leads. The T-shaped GNRs show metallic characteristics when electrons transmit from the metallic GNRs lead to the metallic GNRs lead, while the T-shaped GNRs show semiconducting characteristics when electrons transmit from the metallic GNRs lead to the semiconducting GNRs lead. The conductance between the random two leads can be adjusted by varying the size of the leads.展开更多
Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are...Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are very sensitive to its geometry, size, and edge structures, especially when the size of graphene is below the quantum confinement limit. Graphene nanoribbons (GNRs) can be used as a model system to investigate such structure-sensitive parameters. In this review, we examine the fabrication of GNRs via both top-down and bottom-up approaches. The edge-related electronic and transport properties of GNRs are also discussed.展开更多
Noble metal nanoparticles with localized surface plasmon resonance (LSPR) properties are widely used as optical sensors in biochemical detection and medical diagnosis. In this paper, we propose an effective determin...Noble metal nanoparticles with localized surface plasmon resonance (LSPR) properties are widely used as optical sensors in biochemical detection and medical diagnosis. In this paper, we propose an effective determination method to measure the LSPR absorption intensity of gold nanorods (GNRs). A near-infrared (NIR) imaging system is established, and an NIR absorption image of the multiple samples of the colloidal GNRs is captured. Then, the LSPR absorption intensities of these samples are obtained by calculating the average grayscale of the target areas based on the NIR image processing technology. By using this method, the LSPR absorption intensities of the multiple samples are determined all at once, and their accuracy is as high as that obtained by using spectrophotometry. These results suggest that this method is an efficient multi-channel determination technique with high-throughput sensing applications.展开更多
基金National Natural Science Foundation of China(No.11174242)The Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,China(No.AE201021)+1 种基金The Natural Science Fund for Colleges and Universities in Jiangsu Province,China(No.11KJB140012)Open Project of Key Laboratory for Ecological-Environment Materials of Jiangsu Province,China(No.EML2012012)
文摘In order to explore the transport properties of nonsymmetric three-terminal T-shaped graphene nanoribbons (GNRs) devices,the nonequilibrium Green's function method and Landauer-Buttiker formula were adopted. It shows that the transport properties of T-shaped GNRs are highly sensitive to the details of the leads. The T-shaped GNRs show metallic characteristics when electrons transmit from the metallic GNRs lead to the metallic GNRs lead, while the T-shaped GNRs show semiconducting characteristics when electrons transmit from the metallic GNRs lead to the semiconducting GNRs lead. The conductance between the random two leads can be adjusted by varying the size of the leads.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 61325021, 11574361, and 61390503), the National Basic Research Program of China (973 Program, Grant Nos. 2013CB934500 and 2013CBA01602), and the Key Research Program of Frontier Sciences (Grant No. QYZDB-SSW-SLH004).
文摘Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are very sensitive to its geometry, size, and edge structures, especially when the size of graphene is below the quantum confinement limit. Graphene nanoribbons (GNRs) can be used as a model system to investigate such structure-sensitive parameters. In this review, we examine the fabrication of GNRs via both top-down and bottom-up approaches. The edge-related electronic and transport properties of GNRs are also discussed.
基金Supported by the Natural Science Foundation of Jiangsu Province(SBK201240182)
文摘Noble metal nanoparticles with localized surface plasmon resonance (LSPR) properties are widely used as optical sensors in biochemical detection and medical diagnosis. In this paper, we propose an effective determination method to measure the LSPR absorption intensity of gold nanorods (GNRs). A near-infrared (NIR) imaging system is established, and an NIR absorption image of the multiple samples of the colloidal GNRs is captured. Then, the LSPR absorption intensities of these samples are obtained by calculating the average grayscale of the target areas based on the NIR image processing technology. By using this method, the LSPR absorption intensities of the multiple samples are determined all at once, and their accuracy is as high as that obtained by using spectrophotometry. These results suggest that this method is an efficient multi-channel determination technique with high-throughput sensing applications.