为了解决IaaS(Infrastructure as a Service)云的工作流调度优化问题,提出基于预算约束的工作流调度算法。以最小化工作流调度时长为目标,算法分调度任务选择和虚拟机实例选择两阶段进行。第一阶段将工作流任务依据依赖关系作层次划分,...为了解决IaaS(Infrastructure as a Service)云的工作流调度优化问题,提出基于预算约束的工作流调度算法。以最小化工作流调度时长为目标,算法分调度任务选择和虚拟机实例选择两阶段进行。第一阶段将工作流任务依据依赖关系作层次划分,同层次组成包任务,以Min-Max方法对层次任务估算时间作标准化处理,定义最迟完成时间与最早完成时间差值最大者为调度任务;第二阶段在期望预算下以最早完成时间最小为标准选择资源,实现任务与资源间的映射。利用算例阐述了算法实现过程,并通过仿真实验测试了算法性能。结果证实,改进算法执行效率与调度成功率优于同类算法。展开更多
文摘为了解决IaaS(Infrastructure as a Service)云的工作流调度优化问题,提出基于预算约束的工作流调度算法。以最小化工作流调度时长为目标,算法分调度任务选择和虚拟机实例选择两阶段进行。第一阶段将工作流任务依据依赖关系作层次划分,同层次组成包任务,以Min-Max方法对层次任务估算时间作标准化处理,定义最迟完成时间与最早完成时间差值最大者为调度任务;第二阶段在期望预算下以最早完成时间最小为标准选择资源,实现任务与资源间的映射。利用算例阐述了算法实现过程,并通过仿真实验测试了算法性能。结果证实,改进算法执行效率与调度成功率优于同类算法。