We propose a unique approach for realizing dopingless impact ionization MOS (DL-IMOS) based on the charge plasma concept as a remedy for complex process flow. It uses work-function engineering of electrodes to form ...We propose a unique approach for realizing dopingless impact ionization MOS (DL-IMOS) based on the charge plasma concept as a remedy for complex process flow. It uses work-function engineering of electrodes to form charge plasma as surrogate doping. This charge plasma induces a uniform p-region in the source side and an n-region in the drain side on intrinsic silicon film with a thickness less than the intrinsic Debye length. DL-IMOS offers a simple fabrication process flow as it avoids the need of ion implantation, photo masking and complicated thermal budget via annealing devices. The lower thermal budget is required for DL-IMOS fabrication enables its fabrication on single crystal silicon-on-glass substrate realized by wafer scale epitaxial transfer. It is highly immune to process variations, doping control issues and random dopant fluctuations, while retaining the inherent advantages of conventional IMOS. To epitomize the fabrication process flow for the proposed device a virtual fabrication flow is also proposed here. Extensive device simulation of the major device performance metrics such as subthreshold slope, threshold voltage, drain induced current enhancement, and breakdown voltage have been done for a wide range of electrodes work-function. To evaluate the potential applications of the proposed device at circuit level, its mixed mode simulations are also carried out.展开更多
An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performanc...An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performance of the p-type double gate impact ionization MOSFET (DG-IMOS) is optimized by adjusting the device design parameters. The adjusted parameters are ratio of gate and intrinsic length, gate dielectric thickness and gate work function. Secondly, the DMG (dual material gate) DG-IMOS is proposed and investigated. This DMG DG-IMOS is further optimized to obtain the best possible performance parameters. Simulation results reveal that DMG DG-IMOS when compared to DG-IMOS, shows better IoN, ION/IoFF ratio, and RF parameters. Results show that by properly tuning the lengths of two materials at a ratio of 1.5 in DMG DG-IMOS, optimized perform- ance is achieved including ION/IoFF ratio of 2.87 × 10^9 A/μm with/ON as 11.87 × 10^-4 A/μm and transconductance of 1.06× 10^-3 S/μm. It is analyzed that length of drain side material should be greater than the length of source side material to attain the higher transconductance in DMG DG-IMOS.展开更多
文摘We propose a unique approach for realizing dopingless impact ionization MOS (DL-IMOS) based on the charge plasma concept as a remedy for complex process flow. It uses work-function engineering of electrodes to form charge plasma as surrogate doping. This charge plasma induces a uniform p-region in the source side and an n-region in the drain side on intrinsic silicon film with a thickness less than the intrinsic Debye length. DL-IMOS offers a simple fabrication process flow as it avoids the need of ion implantation, photo masking and complicated thermal budget via annealing devices. The lower thermal budget is required for DL-IMOS fabrication enables its fabrication on single crystal silicon-on-glass substrate realized by wafer scale epitaxial transfer. It is highly immune to process variations, doping control issues and random dopant fluctuations, while retaining the inherent advantages of conventional IMOS. To epitomize the fabrication process flow for the proposed device a virtual fabrication flow is also proposed here. Extensive device simulation of the major device performance metrics such as subthreshold slope, threshold voltage, drain induced current enhancement, and breakdown voltage have been done for a wide range of electrodes work-function. To evaluate the potential applications of the proposed device at circuit level, its mixed mode simulations are also carried out.
文摘An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performance of the p-type double gate impact ionization MOSFET (DG-IMOS) is optimized by adjusting the device design parameters. The adjusted parameters are ratio of gate and intrinsic length, gate dielectric thickness and gate work function. Secondly, the DMG (dual material gate) DG-IMOS is proposed and investigated. This DMG DG-IMOS is further optimized to obtain the best possible performance parameters. Simulation results reveal that DMG DG-IMOS when compared to DG-IMOS, shows better IoN, ION/IoFF ratio, and RF parameters. Results show that by properly tuning the lengths of two materials at a ratio of 1.5 in DMG DG-IMOS, optimized perform- ance is achieved including ION/IoFF ratio of 2.87 × 10^9 A/μm with/ON as 11.87 × 10^-4 A/μm and transconductance of 1.06× 10^-3 S/μm. It is analyzed that length of drain side material should be greater than the length of source side material to attain the higher transconductance in DMG DG-IMOS.