In this paper, the idea of interest coverage is provided to form clusters in sensor network, which mean that the distance among data trends gathered by neighbor sensors is so small that, in some period, those sensors ...In this paper, the idea of interest coverage is provided to form clusters in sensor network, which mean that the distance among data trends gathered by neighbor sensors is so small that, in some period, those sensors can be clustered, and certain sensor can be used to replace the cluster to form the virtual sensor network topology. In detail, the Jensen-Shannon Divergence (JSD) is used to characterize the distance among different distributions which represent the data trend of sensors. Then, based on JSD, a hierarchical clustering algorithm is provided to form the virtual sensor network topology. Simulation shows that the proposed approach gains more than 50% energy saving than Sta- tistical Aggregation Methods (SAM) which transmitted data gathered by sensor only when the differ- ence among data exceed certain threshold.展开更多
基金the National Natural Science Foundation of China (No.60472067)Jiangsu Education Bureau (5KJB510091)State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications (BUPT).
文摘In this paper, the idea of interest coverage is provided to form clusters in sensor network, which mean that the distance among data trends gathered by neighbor sensors is so small that, in some period, those sensors can be clustered, and certain sensor can be used to replace the cluster to form the virtual sensor network topology. In detail, the Jensen-Shannon Divergence (JSD) is used to characterize the distance among different distributions which represent the data trend of sensors. Then, based on JSD, a hierarchical clustering algorithm is provided to form the virtual sensor network topology. Simulation shows that the proposed approach gains more than 50% energy saving than Sta- tistical Aggregation Methods (SAM) which transmitted data gathered by sensor only when the differ- ence among data exceed certain threshold.