We introduce an ultra high energy combined KAM-Rindler fractal spacetime quantum manifold, which increasingly resembles Einstein’s smooth relativity spacetime, with decreasing energy. That way we derive an effective ...We introduce an ultra high energy combined KAM-Rindler fractal spacetime quantum manifold, which increasingly resembles Einstein’s smooth relativity spacetime, with decreasing energy. That way we derive an effective quantum gravity energy-mass relation and compute a dark energy density in complete agreement with all cosmological measurements, specifically WMAP and type 1a supernova. In particular we find that ordinary measurable energy density is given by E1= mc2 /22 while the dark energy density of the vacuum is given by E2 = mc2 (21/22). The sum of both energies is equal to Einstein’s energy E = mc2. We conclude that E= mc2 makes no distinction between ordinary energy and dark energy. More generally we conclude that the geometry and topology of quantum entanglement create our classical spacetime and glue it together and conversely quantum entanglement is the logical consequence of KAM theorem and zero measure topology of quantum spacetime. Furthermore we show via our version of a Rindler hyperbolic spacetime that Hawking negative vacuum energy, Unruh temperature and dark energy are different sides of the same medal.展开更多
In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family...In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family of small amplitude quasi-periodic solutions under such perturbations. The proof is based on an abstract infinite dimensional KAM theorem.展开更多
By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity...By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity are behind the physics and mathematics of quantum entanglement theory. To do this we base ourselves on the comprehensive set theoretical and topological machinery of the Cantorian-fractal E-infinity spacetime theory. Going all the way in this direction we even go beyond a quantum gravity theory to a precise set theoretical understanding of what a quantum particle, a quantum wave and quantum spacetime are. As a consequence of all these results and insights we can reason that the local Casimir pressure is the difference between the zero set quantum particle topological pressure and the empty set quantum wave topological pressure which acts as a wormhole “connecting” two different quantum particles with varying degrees of entanglement corresponding to varying degrees of emptiness of the empty set (wormhole). Our final result generalizes the recent conceptual equation of Susskind and Maldacena ER = EPR to become ZMG = ER = EPR where ZMG stands for zero measure Rindler-KAM geometry (of spacetime). These results were only possible because of the ultimate simplicity of our exact model based on Mauldin-Williams random Cantor sets and the corresponding exact Hardy’s quantum entanglement probability P(H) = where is the Hausdorff dimension of the topologically zero dimensional random Cantor thin set, i.e. a zero measure set and . On the other hand the positive measure spatial separation between the zero sets is a fat Cantor empty set possessing a Hausdorff dimension equal while its Menger-Urysohn topological dimension is a negative value equal minus one. This is the mathematical quintessence of a wormhole paralleling multiple connectivity in classical topology. It is both physically there because of the positive measure and not there because of the negative topological dimension.展开更多
In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle...In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.展开更多
In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small per...In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.展开更多
文摘We introduce an ultra high energy combined KAM-Rindler fractal spacetime quantum manifold, which increasingly resembles Einstein’s smooth relativity spacetime, with decreasing energy. That way we derive an effective quantum gravity energy-mass relation and compute a dark energy density in complete agreement with all cosmological measurements, specifically WMAP and type 1a supernova. In particular we find that ordinary measurable energy density is given by E1= mc2 /22 while the dark energy density of the vacuum is given by E2 = mc2 (21/22). The sum of both energies is equal to Einstein’s energy E = mc2. We conclude that E= mc2 makes no distinction between ordinary energy and dark energy. More generally we conclude that the geometry and topology of quantum entanglement create our classical spacetime and glue it together and conversely quantum entanglement is the logical consequence of KAM theorem and zero measure topology of quantum spacetime. Furthermore we show via our version of a Rindler hyperbolic spacetime that Hawking negative vacuum energy, Unruh temperature and dark energy are different sides of the same medal.
基金Supported by NSFC(No.11126100)the Youth Science and Technology Innovation Fund of Nanjing Agricultural University(No.KJ2010025)the Fundamental Research Fund for the Central Universities(No.Y0201100265)
基金Supported by NSFC(11601036,11401041)Science and Technology Foundation of Shandong Province(J16LI52)
文摘In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family of small amplitude quasi-periodic solutions under such perturbations. The proof is based on an abstract infinite dimensional KAM theorem.
文摘By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity are behind the physics and mathematics of quantum entanglement theory. To do this we base ourselves on the comprehensive set theoretical and topological machinery of the Cantorian-fractal E-infinity spacetime theory. Going all the way in this direction we even go beyond a quantum gravity theory to a precise set theoretical understanding of what a quantum particle, a quantum wave and quantum spacetime are. As a consequence of all these results and insights we can reason that the local Casimir pressure is the difference between the zero set quantum particle topological pressure and the empty set quantum wave topological pressure which acts as a wormhole “connecting” two different quantum particles with varying degrees of entanglement corresponding to varying degrees of emptiness of the empty set (wormhole). Our final result generalizes the recent conceptual equation of Susskind and Maldacena ER = EPR to become ZMG = ER = EPR where ZMG stands for zero measure Rindler-KAM geometry (of spacetime). These results were only possible because of the ultimate simplicity of our exact model based on Mauldin-Williams random Cantor sets and the corresponding exact Hardy’s quantum entanglement probability P(H) = where is the Hausdorff dimension of the topologically zero dimensional random Cantor thin set, i.e. a zero measure set and . On the other hand the positive measure spatial separation between the zero sets is a fat Cantor empty set possessing a Hausdorff dimension equal while its Menger-Urysohn topological dimension is a negative value equal minus one. This is the mathematical quintessence of a wormhole paralleling multiple connectivity in classical topology. It is both physically there because of the positive measure and not there because of the negative topological dimension.
基金Partially supported by the Talent Foundation (522-7901-01140418) of Northwest A & FUniversity.
文摘In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.
基金Partially supported by the SFC(10531050,10225107)of Chinathe SRFDP(20040183030)the 985 program of Jilin University
文摘In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.