以317份贵州香禾糯种质资源为试验材料,10份籼稻材料为对照,采用1 K mGPS SNP芯片对供试材料的遗传多样性和遗传结构进行分析,在此基础上构建贵州香禾糯核心种质并进行评价。结果表明,1 K mGPS SNP芯片在317份香禾糯材料中共获得731个...以317份贵州香禾糯种质资源为试验材料,10份籼稻材料为对照,采用1 K mGPS SNP芯片对供试材料的遗传多样性和遗传结构进行分析,在此基础上构建贵州香禾糯核心种质并进行评价。结果表明,1 K mGPS SNP芯片在317份香禾糯材料中共获得731个良好多态性SNP位点,多态性标记比例为17.89%,最小等位基因频率为0.0505~0.5000,观测杂合度为0~0.6940,期望杂合度为0.0959~0.5000,多态性信息含量为0.0913~0.5736。基于IBS遗传距离的NJ聚类分析将327份水稻材料分为籼、粳两个亚群,其中317份贵州香禾糯划分为粳稻亚群。利用Core Hunter 3对香禾糯原种质设置5%、10%、15%、20%、25%、30%等6种抽样比例,遗传多样性参数的t检验表明,15%的抽样比例即可保持遗传多样性参数的最大化,同时剔除了许多冗余材料,最终确定47份香禾糯资源为构建的核心种质。展开更多
We introduce an ultra high energy combined KAM-Rindler fractal spacetime quantum manifold, which increasingly resembles Einstein’s smooth relativity spacetime, with decreasing energy. That way we derive an effective ...We introduce an ultra high energy combined KAM-Rindler fractal spacetime quantum manifold, which increasingly resembles Einstein’s smooth relativity spacetime, with decreasing energy. That way we derive an effective quantum gravity energy-mass relation and compute a dark energy density in complete agreement with all cosmological measurements, specifically WMAP and type 1a supernova. In particular we find that ordinary measurable energy density is given by E1= mc2 /22 while the dark energy density of the vacuum is given by E2 = mc2 (21/22). The sum of both energies is equal to Einstein’s energy E = mc2. We conclude that E= mc2 makes no distinction between ordinary energy and dark energy. More generally we conclude that the geometry and topology of quantum entanglement create our classical spacetime and glue it together and conversely quantum entanglement is the logical consequence of KAM theorem and zero measure topology of quantum spacetime. Furthermore we show via our version of a Rindler hyperbolic spacetime that Hawking negative vacuum energy, Unruh temperature and dark energy are different sides of the same medal.展开更多
文摘以317份贵州香禾糯种质资源为试验材料,10份籼稻材料为对照,采用1 K mGPS SNP芯片对供试材料的遗传多样性和遗传结构进行分析,在此基础上构建贵州香禾糯核心种质并进行评价。结果表明,1 K mGPS SNP芯片在317份香禾糯材料中共获得731个良好多态性SNP位点,多态性标记比例为17.89%,最小等位基因频率为0.0505~0.5000,观测杂合度为0~0.6940,期望杂合度为0.0959~0.5000,多态性信息含量为0.0913~0.5736。基于IBS遗传距离的NJ聚类分析将327份水稻材料分为籼、粳两个亚群,其中317份贵州香禾糯划分为粳稻亚群。利用Core Hunter 3对香禾糯原种质设置5%、10%、15%、20%、25%、30%等6种抽样比例,遗传多样性参数的t检验表明,15%的抽样比例即可保持遗传多样性参数的最大化,同时剔除了许多冗余材料,最终确定47份香禾糯资源为构建的核心种质。
文摘We introduce an ultra high energy combined KAM-Rindler fractal spacetime quantum manifold, which increasingly resembles Einstein’s smooth relativity spacetime, with decreasing energy. That way we derive an effective quantum gravity energy-mass relation and compute a dark energy density in complete agreement with all cosmological measurements, specifically WMAP and type 1a supernova. In particular we find that ordinary measurable energy density is given by E1= mc2 /22 while the dark energy density of the vacuum is given by E2 = mc2 (21/22). The sum of both energies is equal to Einstein’s energy E = mc2. We conclude that E= mc2 makes no distinction between ordinary energy and dark energy. More generally we conclude that the geometry and topology of quantum entanglement create our classical spacetime and glue it together and conversely quantum entanglement is the logical consequence of KAM theorem and zero measure topology of quantum spacetime. Furthermore we show via our version of a Rindler hyperbolic spacetime that Hawking negative vacuum energy, Unruh temperature and dark energy are different sides of the same medal.
基金Supported by NSFC(No.11126100)the Youth Science and Technology Innovation Fund of Nanjing Agricultural University(No.KJ2010025)the Fundamental Research Fund for the Central Universities(No.Y0201100265)