3C-SiC films have been deposited on Si (111) substrates by the low-pressure vertical chemical vapor deposition (LPVCVD) with gas mixtures of SiH4, Calls and H2. The growth mechanism of SiC films can be obtained th...3C-SiC films have been deposited on Si (111) substrates by the low-pressure vertical chemical vapor deposition (LPVCVD) with gas mixtures of SiH4, Calls and H2. The growth mechanism of SiC films can be obtained through the observations using field emission scanning electron microscope (FESEM). It is found that the growth process varies from surface control to diffusion control when the deposition temperature increases from 1270 to 1350℃. The X-ray diffraction (XRD) patterns show that the SiC films have good crystallinity and strong preferred orientation.The results of the high resolution transmission electron microscopy (HRTEM) image and the transmission electron diffraction (TED) pattern indicate a peculiar superlattice structure of the film. The values of the binding energy in the high resolution X-ray photoelectron spectra (XPS) further confirm the formation of SiC.展开更多
基金Financial support from the National Natural Science Foundation of China under the grant No.50132040 is grate-fully acknowledged.
文摘3C-SiC films have been deposited on Si (111) substrates by the low-pressure vertical chemical vapor deposition (LPVCVD) with gas mixtures of SiH4, Calls and H2. The growth mechanism of SiC films can be obtained through the observations using field emission scanning electron microscope (FESEM). It is found that the growth process varies from surface control to diffusion control when the deposition temperature increases from 1270 to 1350℃. The X-ray diffraction (XRD) patterns show that the SiC films have good crystallinity and strong preferred orientation.The results of the high resolution transmission electron microscopy (HRTEM) image and the transmission electron diffraction (TED) pattern indicate a peculiar superlattice structure of the film. The values of the binding energy in the high resolution X-ray photoelectron spectra (XPS) further confirm the formation of SiC.