多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提...多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提前安装。此外,同时进行任务迁移和服务缓存可能会因时间冲突而导致计算延时。因此,针对上述相关问题,首先将任务迁移和服务缓存决策进行解耦,针对深度强化学习(deep reinforcement learning,DRL)在具有高维的混合决策空间的性能提升不明显的缺点(例如资源分配时利用率不高),将DRL与Transformer结合,通过在历史数据中学习,输出当前时隙的任务迁移决策和下一时隙的任务决策,保证任务到达边缘服务器时能立即执行。其次,为了提高资源分配问题中的资源利用率,将问题分解为连续资源分配问题和离散的任务迁移与服务缓存问题,利用凸优化技术求解资源分配最优决策。广泛的数值结果表明,与其他基线算法相比,提出的算法能有效地减少任务的平均完成时延,同时在资源利用率和稳定性方面也有优异的表现。展开更多
随着智能电网系统中移动终端的增加,其对传输数据低时延、大带宽和高可靠性的需求尤为紧迫。为解决其中无线传输、信息处理和可靠性不足等问题,文章采用“切片分组网(sliced packet network,SPN)+可信无线局域网(wireless local area ne...随着智能电网系统中移动终端的增加,其对传输数据低时延、大带宽和高可靠性的需求尤为紧迫。为解决其中无线传输、信息处理和可靠性不足等问题,文章采用“切片分组网(sliced packet network,SPN)+可信无线局域网(wireless local area network,WLAN)”通信新技术网络架构,建立多种移动终端设备安全无线传输和计算任务卸载的总时延优化卸载模型,提出一种基于交替优化技术的算法。仿真结果表明,该策略不仅保证设备安全高效地接入网络,还可显著降低传输时延,具有优异的成本效益。展开更多
在移动边缘计算的物联网(Mobile Edge Computing-enabled Internet of Things Networks,IoT-MEC)中,物联终端的高移动性、服务请求的随机到达性以及网络流量的实时变化,导致原有应用场景下的资源配置与服务部署不再完全匹配。如何有效...在移动边缘计算的物联网(Mobile Edge Computing-enabled Internet of Things Networks,IoT-MEC)中,物联终端的高移动性、服务请求的随机到达性以及网络流量的实时变化,导致原有应用场景下的资源配置与服务部署不再完全匹配。如何有效利用网络提供的资源以实现服务功能链(Service Function Chain,SFC)的实时部署和重构是一个重要的挑战。针对用户的高移动性和网络流量的实时变化造成的SFC性能需求和已分配资源不匹配的问题,提出IoT-MEC网络中基于用户移动和资源需求预测的SFC重构策略。建立以SFC的端到端时延和重构成本最小化为目标的整数线性规划模型;设计基于注意力机制的Encoder-Decoder移动用户轨迹预测模型和基于长短期记忆(Long Short-Term Memory,LSTM)网络的虚拟网络功能(Virtual Network Function,VNF)实例资源需求预测模型,分别准确预测用户移动轨迹和节点负载;基于预测结果提出SFC主动重构(Predict-based SFC Active Reconfiguration,PSAR)启发式算法,确保在服务质量(Quality of Service,QoS)下降之前,提前完成VNF迁移和路由更新,实现SFC的主动重构和无缝迁移,保证网络的一致性高质量服务。仿真结果表明,所提算法有效降低了SFC端到端时延和重构成本。展开更多
文摘随着智能电网系统中移动终端的增加,其对传输数据低时延、大带宽和高可靠性的需求尤为紧迫。为解决其中无线传输、信息处理和可靠性不足等问题,文章采用“切片分组网(sliced packet network,SPN)+可信无线局域网(wireless local area network,WLAN)”通信新技术网络架构,建立多种移动终端设备安全无线传输和计算任务卸载的总时延优化卸载模型,提出一种基于交替优化技术的算法。仿真结果表明,该策略不仅保证设备安全高效地接入网络,还可显著降低传输时延,具有优异的成本效益。
文摘在移动边缘计算的物联网(Mobile Edge Computing-enabled Internet of Things Networks,IoT-MEC)中,物联终端的高移动性、服务请求的随机到达性以及网络流量的实时变化,导致原有应用场景下的资源配置与服务部署不再完全匹配。如何有效利用网络提供的资源以实现服务功能链(Service Function Chain,SFC)的实时部署和重构是一个重要的挑战。针对用户的高移动性和网络流量的实时变化造成的SFC性能需求和已分配资源不匹配的问题,提出IoT-MEC网络中基于用户移动和资源需求预测的SFC重构策略。建立以SFC的端到端时延和重构成本最小化为目标的整数线性规划模型;设计基于注意力机制的Encoder-Decoder移动用户轨迹预测模型和基于长短期记忆(Long Short-Term Memory,LSTM)网络的虚拟网络功能(Virtual Network Function,VNF)实例资源需求预测模型,分别准确预测用户移动轨迹和节点负载;基于预测结果提出SFC主动重构(Predict-based SFC Active Reconfiguration,PSAR)启发式算法,确保在服务质量(Quality of Service,QoS)下降之前,提前完成VNF迁移和路由更新,实现SFC的主动重构和无缝迁移,保证网络的一致性高质量服务。仿真结果表明,所提算法有效降低了SFC端到端时延和重构成本。