采用坩埚下降法技术,选用CdO∶WO3∶MnO摩尔比为100∶100∶0.5的化学组分配比,在约60℃固液界面温度梯度与0.05 mm/h生长速度条件下,成功地生长出Φ25 mm×100 mm Mn2+掺杂CdWO4(Mn2+:CWO)单晶。观测了晶体未退火、经空气和O2退火...采用坩埚下降法技术,选用CdO∶WO3∶MnO摩尔比为100∶100∶0.5的化学组分配比,在约60℃固液界面温度梯度与0.05 mm/h生长速度条件下,成功地生长出Φ25 mm×100 mm Mn2+掺杂CdWO4(Mn2+:CWO)单晶。观测了晶体未退火、经空气和O2退火处理后的的吸收、激发和发射光谱。结果表明,在Mn2+:CWO晶体的发射光谱中观测到发光中心约为591 nm的橙色荧光带,它归属于Mn2+的4T1g→6A1g能级跃迁。从Mn2+的橙色发射可以推断Mn2+取代晶体中Cd2+的格位,位于八面体晶场中。从其光谱特性,确定了Mn2+的能级结构。退火处理增强了激发和发射峰的强度,并且O2退火比空气退火的效果更显著。展开更多
The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS...The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zerofield splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman g-factors: g// and g⊥, and the energy differences of the ground state: δ1 and δ2 for Mn^2+ in Mn^2+: ZnO are in good agreement with experimental measurements when the three O^2- ions below the Mn^2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn^2+ ions in Mn^2+: ZnO crystals. It is found for Mn^2+ ions in Mn^2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO-SS-SOO-OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.展开更多
基金supported by the Science and Technology Foundation of Shaanxi Province,China (Grant No 2006K04-G29)the National Defense Foundation of China (Grant No EP060302)the Key Research Foundation of Baoji University of Arts and Sciences,China (Grant No ZK0842)
文摘The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zerofield splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman g-factors: g// and g⊥, and the energy differences of the ground state: δ1 and δ2 for Mn^2+ in Mn^2+: ZnO are in good agreement with experimental measurements when the three O^2- ions below the Mn^2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn^2+ ions in Mn^2+: ZnO crystals. It is found for Mn^2+ ions in Mn^2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO-SS-SOO-OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.