To mitigate the impacts of non-line-of-sight(NLOS) errors on location accuracy, a non-parametric belief propagation(NBP)-based localization algorithm in the NLOS environment for wireless sensor networks is propose...To mitigate the impacts of non-line-of-sight(NLOS) errors on location accuracy, a non-parametric belief propagation(NBP)-based localization algorithm in the NLOS environment for wireless sensor networks is proposed.According to the amount of prior information known about the probabilities and distribution parameters of the NLOS error distribution, three different cases of the maximum a posterior(MAP) localization problems are introduced. The first case is the idealized case, i. e., the range measurements in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known. The probability of a communication of a pair of nodes in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known in the second case. The third case is the worst case, in which only knowledge about noise measurement power is obtained. The proposed algorithm is compared with the maximum likelihood-simulated annealing(ML-SA)-based localization algorithm. Simulation results demonstrate that the proposed algorithm provides good location accuracy and considerably outperforms the ML-SA-based localization algorithm for every case. The root mean square error(RMSE)of the location estimate of the NBP-based localization algorithm is reduced by about 1. 6 m in Case 1, 1. 8 m in Case 2 and 2. 3 m in Case 3 compared with the ML-SA-based localization algorithm. Therefore, in the NLOS environments,the localization algorithms can obtain the location estimates with high accuracy by using the NBP method.展开更多
In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorith...In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position.展开更多
The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagati...The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagation error, residual test (RT) is an efficient one, however with high computational complexity (CC). An improved algorithm that memorizes the light of sight (LOS) range measurements (RMs) identified memorize LOS range measurements identified residual test (MLSI-RT) is presented in this paper to address this problem. The MLSI-RT is based on the assumption that when all RMs are from LOS propagations, the normalized residual follows the central Chi-Square distribution while for NLOS cases it is non-central. This study can reduce the CC by more than 90%.展开更多
基金The National Natural Science Foundation of China(No.61271207,61372104)
文摘To mitigate the impacts of non-line-of-sight(NLOS) errors on location accuracy, a non-parametric belief propagation(NBP)-based localization algorithm in the NLOS environment for wireless sensor networks is proposed.According to the amount of prior information known about the probabilities and distribution parameters of the NLOS error distribution, three different cases of the maximum a posterior(MAP) localization problems are introduced. The first case is the idealized case, i. e., the range measurements in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known. The probability of a communication of a pair of nodes in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known in the second case. The third case is the worst case, in which only knowledge about noise measurement power is obtained. The proposed algorithm is compared with the maximum likelihood-simulated annealing(ML-SA)-based localization algorithm. Simulation results demonstrate that the proposed algorithm provides good location accuracy and considerably outperforms the ML-SA-based localization algorithm for every case. The root mean square error(RMSE)of the location estimate of the NBP-based localization algorithm is reduced by about 1. 6 m in Case 1, 1. 8 m in Case 2 and 2. 3 m in Case 3 compared with the ML-SA-based localization algorithm. Therefore, in the NLOS environments,the localization algorithms can obtain the location estimates with high accuracy by using the NBP method.
基金The National High Technology Research and Development Program of China(863Program)(No.2008AA01Z227)the National Natural Science Foundation of China(No.60872075)
文摘In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position.
基金supported by the State Key Program of National Natural Science of China (Grant No.60532030)the New Century Excellent Talents in University (Grant No.NCET-08-0333)the Natural Science Foundation of Shandong Province (Grant No.Y2007G10)
文摘The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagation error, residual test (RT) is an efficient one, however with high computational complexity (CC). An improved algorithm that memorizes the light of sight (LOS) range measurements (RMs) identified memorize LOS range measurements identified residual test (MLSI-RT) is presented in this paper to address this problem. The MLSI-RT is based on the assumption that when all RMs are from LOS propagations, the normalized residual follows the central Chi-Square distribution while for NLOS cases it is non-central. This study can reduce the CC by more than 90%.