In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. Th...In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. The analytics and numerical calculation show the influence of pump depletion on the error in the measurement of continuous variables. The optimum realization of EPR paradox can be achieved by adjusting the parameter of squeezing. This result is of practical importance when the realistic experimental conditions are taken into consideration .展开更多
A quantum encryption protocol based on Gaussian-modulated continuous variable EPR correlations is proposed. The security is guaranteed by continuous variable EPR entanglement correlations produced by nondegenerate opt...A quantum encryption protocol based on Gaussian-modulated continuous variable EPR correlations is proposed. The security is guaranteed by continuous variable EPR entanglement correlations produced by nondegenerate optical parametric amplifier (NOPA). For general beam splitter eavesdropping strategy, the mutual information I(α, ε) between Alice and Eve is caJculated by employing Shannon information theory. Finally the security analysis is presented.展开更多
文摘In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. The analytics and numerical calculation show the influence of pump depletion on the error in the measurement of continuous variables. The optimum realization of EPR paradox can be achieved by adjusting the parameter of squeezing. This result is of practical importance when the realistic experimental conditions are taken into consideration .
基金The project supported by National Natural Science Foundation of China under Grant No. 60472018
文摘A quantum encryption protocol based on Gaussian-modulated continuous variable EPR correlations is proposed. The security is guaranteed by continuous variable EPR entanglement correlations produced by nondegenerate optical parametric amplifier (NOPA). For general beam splitter eavesdropping strategy, the mutual information I(α, ε) between Alice and Eve is caJculated by employing Shannon information theory. Finally the security analysis is presented.