We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon ...We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without the application of the external cavity as well as a high frequency source and recorder, with measuring the only magnetoresistance (EDESR) and transmission (ODMR) spectra within frameworks of the excitonic normal-mode coupling (NMC) caused by the microcavities embedded in the Si-QW plane. The new resonant positive magnetoresistance data are interpreted here in terms of the interference transition in the diffusive transport of free holes respectively between the weak antilocalization regime in the region far from the ESR of a paramagnetic point defect located inside or near the conductive channel and the weak localization regime in the nearest region of the ESR of that defect.展开更多
We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy(NV) color center with a nearest neighbor ^13C nuclear spin in diamond to detect the strength and direction(includin...We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy(NV) color center with a nearest neighbor ^13C nuclear spin in diamond to detect the strength and direction(including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance(ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor ^13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave(CW) spectrum.展开更多
We suggest an experimental scheme that a single nitrogen-vacancy(NV) center coupled to a nearest neighbor ^13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical...We suggest an experimental scheme that a single nitrogen-vacancy(NV) center coupled to a nearest neighbor ^13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical detection magnetic resonance(ODMR) technique, both the strength and the direction of the vector field could be determined by relevant resonance frequencies of continuous wave(CW) and Ramsey spectrums. In addition, we give a method that determines the unique one of eight possible hyperfine tensors for an(NV–^13C) system. Finally, we propose an unambiguous method to exclude the symmetrical solution from eight possible vector fields, which correspond to nearly identical resonance frequencies due to their mirror symmetry about ^14N–Vacancy–^13 C(^14N–V–^13C) plane.展开更多
文摘We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without the application of the external cavity as well as a high frequency source and recorder, with measuring the only magnetoresistance (EDESR) and transmission (ODMR) spectra within frameworks of the excitonic normal-mode coupling (NMC) caused by the microcavities embedded in the Si-QW plane. The new resonant positive magnetoresistance data are interpreted here in terms of the interference transition in the diffusive transport of free holes respectively between the weak antilocalization regime in the region far from the ESR of a paramagnetic point defect located inside or near the conductive channel and the weak localization regime in the nearest region of the ESR of that defect.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11305074,11135002,and 11275083)the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province,China(Grant No.gxyq ZD2017080)the Education Department Natural Science Foundation of Anhui Province,China(Grant No.KJHS2015B09)
文摘We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy(NV) color center with a nearest neighbor ^13C nuclear spin in diamond to detect the strength and direction(including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance(ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor ^13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave(CW) spectrum.
基金Protect supported by the National Natural Science Foundation of China(Grant Nos.11305074,11135002,and 11275083)the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province,China(Grant No.gxyq ZD2017080)the Natural Science Foundation of Anhui Province,China(Grant No.KJHS2015B09)
文摘We suggest an experimental scheme that a single nitrogen-vacancy(NV) center coupled to a nearest neighbor ^13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical detection magnetic resonance(ODMR) technique, both the strength and the direction of the vector field could be determined by relevant resonance frequencies of continuous wave(CW) and Ramsey spectrums. In addition, we give a method that determines the unique one of eight possible hyperfine tensors for an(NV–^13C) system. Finally, we propose an unambiguous method to exclude the symmetrical solution from eight possible vector fields, which correspond to nearly identical resonance frequencies due to their mirror symmetry about ^14N–Vacancy–^13 C(^14N–V–^13C) plane.