The pulse cowpea [Vigna unguiculata (L.) Walp] holds a significant agricultural position in Uganda, ranking fourth among legume crops, following common beans, groundnuts, and soybeans. Known for its versatility, cowpe...The pulse cowpea [Vigna unguiculata (L.) Walp] holds a significant agricultural position in Uganda, ranking fourth among legume crops, following common beans, groundnuts, and soybeans. Known for its versatility, cowpeas are consumable at various developmental stages, from early seedling to maturity. However, the crop faces persistent pest challenges at each stage, leading to substantial yield losses. In Uganda, chemical insecticides are the primary pest control means, but their increased and excessive use raises environmental, health, and economic concerns. This has prompted a quest for alternative and sustainable solutions, prompting an exploration of botanical insecticides. This study, conducted at Makerere University Agricultural Research Institute (MUARIK), aimed to evaluate the effectiveness of three selected botanical insecticides versus four established chemical insecticides for managing cowpea insect pests under field conditions. The treatments included: Carbofuran, Cypermethrin 10% EC, Dimethoate, Pestwin, Pyrethrum ewc , Pyrethrum 5ew, Profenofos 40% Cypermethrin 4% EC mix, and Untreated, arranged in a randomized complete block design with three replications. The significant pests studied were aphids, thrips, pod-sucking bugs, and legume pod borer. Results indicated substantial impacts of the treatments on pest infestation, with Profenofos 40% Cypermethrin 4% EC being the most effective against most pests. The plant parameter, plant height, was significantly affected by treatments in 2016B, while the number of pods was impacted in 2017A. Pestwin, a botanical insecticide blend (containing Azadirachtin indica, Pongamia pinnata, and Ricinus communis extracts) demonstrated superior efficacy against cowpea aphids. Moreover, it positively influenced plant height, number of pods, and pod biomass, surpassing many chemical insecticides. Pestwin’s environmental friendliness positions it as a potential contributor to reducing environmental pollution, making it a promising candidate for inclusion in IPM programs. Overall, the study underscores the importance of exploring botanical alternatives to chemical insecticides for sustainable pest management in cowpea cultivation.展开更多
文摘The pulse cowpea [Vigna unguiculata (L.) Walp] holds a significant agricultural position in Uganda, ranking fourth among legume crops, following common beans, groundnuts, and soybeans. Known for its versatility, cowpeas are consumable at various developmental stages, from early seedling to maturity. However, the crop faces persistent pest challenges at each stage, leading to substantial yield losses. In Uganda, chemical insecticides are the primary pest control means, but their increased and excessive use raises environmental, health, and economic concerns. This has prompted a quest for alternative and sustainable solutions, prompting an exploration of botanical insecticides. This study, conducted at Makerere University Agricultural Research Institute (MUARIK), aimed to evaluate the effectiveness of three selected botanical insecticides versus four established chemical insecticides for managing cowpea insect pests under field conditions. The treatments included: Carbofuran, Cypermethrin 10% EC, Dimethoate, Pestwin, Pyrethrum ewc , Pyrethrum 5ew, Profenofos 40% Cypermethrin 4% EC mix, and Untreated, arranged in a randomized complete block design with three replications. The significant pests studied were aphids, thrips, pod-sucking bugs, and legume pod borer. Results indicated substantial impacts of the treatments on pest infestation, with Profenofos 40% Cypermethrin 4% EC being the most effective against most pests. The plant parameter, plant height, was significantly affected by treatments in 2016B, while the number of pods was impacted in 2017A. Pestwin, a botanical insecticide blend (containing Azadirachtin indica, Pongamia pinnata, and Ricinus communis extracts) demonstrated superior efficacy against cowpea aphids. Moreover, it positively influenced plant height, number of pods, and pod biomass, surpassing many chemical insecticides. Pestwin’s environmental friendliness positions it as a potential contributor to reducing environmental pollution, making it a promising candidate for inclusion in IPM programs. Overall, the study underscores the importance of exploring botanical alternatives to chemical insecticides for sustainable pest management in cowpea cultivation.