PICK1蛋白(protein interacting with C alpha kinase 1)是一种同时具有PDZ和BAR区域的支架蛋白,在哺乳动物体内与多种蛋白质相互作用,并被证明在多种生理过程中发挥重要的调节作用,同时参与了多种疾病病理过程。因此,PICK1蛋白可能成...PICK1蛋白(protein interacting with C alpha kinase 1)是一种同时具有PDZ和BAR区域的支架蛋白,在哺乳动物体内与多种蛋白质相互作用,并被证明在多种生理过程中发挥重要的调节作用,同时参与了多种疾病病理过程。因此,PICK1蛋白可能成为极具前景的疾病治疗靶点。该文通过对近年来国内外发表的相关文献进行整理与分析,综述了PICK1蛋白的生理功能与其作为药物靶点的研究新进展,旨在为PICK1蛋白的深入研究提供理论支持。展开更多
Globozoospermia is a human infertility syndrome caused by spermatogenesis defects (OMIM 102530). Acrosome plays an important role at the site of sperm-zonapellucida binding during the fertilization process. Thus, ma...Globozoospermia is a human infertility syndrome caused by spermatogenesis defects (OMIM 102530). Acrosome plays an important role at the site of sperm-zonapellucida binding during the fertilization process. Thus, malformation of the acrosome is the most prominent feature seen in globozoospermia. Disruption of several mouse genes, including Gopc (Golgi-associated PDZ and coiled-coil motif containing protein), Hrb (HIV-I Rev binding protein), Csnk2α2 (casein kinase 2, α prime polypeptide) and Pick1 (protein interacting with C kinase 1), results in a phenotype similar to globozoospermia in humans, which suggests their potential role in the disease. However, no mutations with a clear link to globozoospermia have been identified in these genes in humans. In this study, we screened the candidate genes men- tioned above in three globozoospermia type I patients and discovered a homozygous missense mutation (G198A) in exon 13 of the PICK1 gene in a Chinese family. The family member affected by this homozygous missense mutation showed a complete lack of acrosome. Using the candidate gene screening strategy, our study is the first to identify an autosomal recessive genetic mutation in PICK1 that was responsible for globozoospermia in humans.展开更多
目的:研究PICK1(protein interacting with C kinase 1)蛋白PDZ结构域内83位点赖氨酸(K83)对PICK1和AMPA受体GluR2亚单位相互作用的影响。方法:利用计算机对PICK1 PDZ结构域和GluR2 C末端4个氨基酸残基进行对接模拟,然后将K83进行虚拟...目的:研究PICK1(protein interacting with C kinase 1)蛋白PDZ结构域内83位点赖氨酸(K83)对PICK1和AMPA受体GluR2亚单位相互作用的影响。方法:利用计算机对PICK1 PDZ结构域和GluR2 C末端4个氨基酸残基进行对接模拟,然后将K83进行虚拟点突变,计算并观察突变后结构和键能的改变。利用实验室已有的野生型全长PICK1 cDNA质粒为模板,构建点突变质粒,与野生型GluR2共转到HEK293T细胞,观察两者在细胞内定位和分布的改变。结果:当野生型PICK1与GluR2共转染时,HEK293T细胞有大量PICK1和GluR2共定位的集簇(cluster)。当我们把构建的PICK1突变体与GluR2共转染时,不同的突变体表现出不一样的改变。结论:改变K83位点的氨基酸结构,很可能会改变PICK1 PDZ结构域与GluR2 C末端结合所形成的疏水、氢键、静电相互作用,使得PDZ结构域与GluR2 C末端的结合能力发生不同程度的改变。展开更多
PICK1(protein interacting with C kinase 1)是一种含PDZ(PSD-95/Dlg/ZO1)结构域和BAR(Bin/amphiphysin/Rvs)结构域的蛋白,它可通过PDZ结构域与多种蛋白发生相互作用,其中一些蛋白与中枢神经系统(CNS)疾病密切相关。文中综述了近年来关...PICK1(protein interacting with C kinase 1)是一种含PDZ(PSD-95/Dlg/ZO1)结构域和BAR(Bin/amphiphysin/Rvs)结构域的蛋白,它可通过PDZ结构域与多种蛋白发生相互作用,其中一些蛋白与中枢神经系统(CNS)疾病密切相关。文中综述了近年来关于PICK1在几种中枢神经系统疾病中的作用研究,以期对疾病研究和临床治疗提供参考。展开更多
Two DNA fragments encoding PDZ domain (21-110 residues) and BAR domain ( 150-360 residues) from PICK1 (1-416 residues) were amplified by PCR and then introduced into vectors, pET-32M and pMAL-e2X respectively to...Two DNA fragments encoding PDZ domain (21-110 residues) and BAR domain ( 150-360 residues) from PICK1 (1-416 residues) were amplified by PCR and then introduced into vectors, pET-32M and pMAL-e2X respectively to generate recombinant plasmids, pE-pdz and pM-bar. Having been separately transferred into the hosts E. coli BL21 and E. coli JM109, these two strains can express fusion proteins: His-tagged PDZ(PDZ domain) and maltose binding protein-BAR( MBP-BAR domain) respectively, as confirmed by both SDS-PAGE and Wostem blotting. The interaction between these two domains is dose-dependence, as identified by a pull-down test. Moreover, it has been shown from the ELISA analysis that the actual amount of PDZ bound to MBP-BAR-amylose beads reaches ( 16 ± 0. 5)%, as calculated by the molar ratio of PDZ to MBP-BAR. In addition, the interaction between BAR(bait) and PDZ(prey) in vivo was also examined with a yeast two-hybrid system.展开更多
文摘PICK1蛋白(protein interacting with C alpha kinase 1)是一种同时具有PDZ和BAR区域的支架蛋白,在哺乳动物体内与多种蛋白质相互作用,并被证明在多种生理过程中发挥重要的调节作用,同时参与了多种疾病病理过程。因此,PICK1蛋白可能成为极具前景的疾病治疗靶点。该文通过对近年来国内外发表的相关文献进行整理与分析,综述了PICK1蛋白的生理功能与其作为药物靶点的研究新进展,旨在为PICK1蛋白的深入研究提供理论支持。
文摘Globozoospermia is a human infertility syndrome caused by spermatogenesis defects (OMIM 102530). Acrosome plays an important role at the site of sperm-zonapellucida binding during the fertilization process. Thus, malformation of the acrosome is the most prominent feature seen in globozoospermia. Disruption of several mouse genes, including Gopc (Golgi-associated PDZ and coiled-coil motif containing protein), Hrb (HIV-I Rev binding protein), Csnk2α2 (casein kinase 2, α prime polypeptide) and Pick1 (protein interacting with C kinase 1), results in a phenotype similar to globozoospermia in humans, which suggests their potential role in the disease. However, no mutations with a clear link to globozoospermia have been identified in these genes in humans. In this study, we screened the candidate genes men- tioned above in three globozoospermia type I patients and discovered a homozygous missense mutation (G198A) in exon 13 of the PICK1 gene in a Chinese family. The family member affected by this homozygous missense mutation showed a complete lack of acrosome. Using the candidate gene screening strategy, our study is the first to identify an autosomal recessive genetic mutation in PICK1 that was responsible for globozoospermia in humans.
文摘PICK1(protein interacting with C kinase 1)是一种含PDZ(PSD-95/Dlg/ZO1)结构域和BAR(Bin/amphiphysin/Rvs)结构域的蛋白,它可通过PDZ结构域与多种蛋白发生相互作用,其中一些蛋白与中枢神经系统(CNS)疾病密切相关。文中综述了近年来关于PICK1在几种中枢神经系统疾病中的作用研究,以期对疾病研究和临床治疗提供参考。
基金the National Natural Science Foundation of China(No 30400065)
文摘Two DNA fragments encoding PDZ domain (21-110 residues) and BAR domain ( 150-360 residues) from PICK1 (1-416 residues) were amplified by PCR and then introduced into vectors, pET-32M and pMAL-e2X respectively to generate recombinant plasmids, pE-pdz and pM-bar. Having been separately transferred into the hosts E. coli BL21 and E. coli JM109, these two strains can express fusion proteins: His-tagged PDZ(PDZ domain) and maltose binding protein-BAR( MBP-BAR domain) respectively, as confirmed by both SDS-PAGE and Wostem blotting. The interaction between these two domains is dose-dependence, as identified by a pull-down test. Moreover, it has been shown from the ELISA analysis that the actual amount of PDZ bound to MBP-BAR-amylose beads reaches ( 16 ± 0. 5)%, as calculated by the molar ratio of PDZ to MBP-BAR. In addition, the interaction between BAR(bait) and PDZ(prey) in vivo was also examined with a yeast two-hybrid system.