期刊文献+
共找到446篇文章
< 1 2 23 >
每页显示 20 50 100
Sustainable Biocomposites Materials for Automotive Brake Pad Application:An Overview
1
作者 Joseph O.Dirisu Imhade P.Okokpujie +4 位作者 Olufunmilayo O.Joseph Sunday O.Oyedepo Oluwasegun Falodun Lagouge K.Tartibu Firdaussi D.Shehu 《Journal of Renewable Materials》 EI CAS 2024年第3期485-511,共27页
Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscri... Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads. 展开更多
关键词 Asbestos brake pad biocompositeS green composite mechanical properties natural reinforcement WASTE
下载PDF
Development and Characterization of Calcium Based Biocomposites Using Waste Material (Calcite Stones) for Biomedical Applications
2
作者 Tasmim Adry Nuzhat Tabassum Maisha +2 位作者 Md. Abdul Gafur Suraya Sabrin Soshi Maruf Hasan 《Materials Sciences and Applications》 2024年第5期113-135,共23页
Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and character... Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing. 展开更多
关键词 HYDROXYAPATITE Calcium-Based biocomposites PVA-Gelatin Films Drug Delivery Bone Tissue Engineering
下载PDF
Characterization of Formacell Lignin Derived from Black Liquor as a Potential Green Additive for Advanced Biocomposites
3
作者 Sri Hidayati Eugenia Fonny Budiyanto +7 位作者 Hadi Saputra Sutopo Hadi Apri Heri Iswanto Nissa Nurfajrin Solihat Petar Antov Lee Seng Hua Widya Fatriasari MohdSapuan Salit 《Journal of Renewable Materials》 SCIE EI 2023年第6期2865-2879,共15页
Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a... Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a major constituent in black liquor,with quantities varying from 20%to 30%,of which a very low share is used for manufacturing value-added products,while the rest is mainly burned for energy purposes,thus underestimating its great potential as a raw material.Therefore,it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals.The aim of this research work was to determine the effect of KOH or ethanol concentration as an isolation agent on lignin yields and the chemical characteristics of lignin isolated from formacell black liquor of oil palm empty fruit bunch(OPEFB).Isolation of lignin was carried out using KOH with various concentrations ranging from 5%to 15%(w/v).Ethanol was also used to precipitate lignin from black liquor at concentrations varying from 5%to 30%(v/v).The results obtained showed that the addition of KOH solution at 12.5%and 15%concentrations resulted in better lignin yield and chemical properties of lignin,i.e.,pH values of 3.86 and 4.27,lignin yield of 12.78%and 14.95%,methoxyl content of 11.33%and 10.13%,and lignin equivalent weights of 476.25 and 427.03,respectively.Due to its phenolic structure and rich functional groups that are favorable for modifications,lignin has the potential to be used as a green additive in the development of advanced biocomposite products in various applications to replace current fossil fuel-based material,ranging from fillers,fire retardants,formaldehyde scavengers,carbon fibers,aerogels,and wood adhesives. 展开更多
关键词 Formacell black liquor lignin properties KOH ETHANOL oil palm empty fruit bunch advanced biocomposite
下载PDF
PLLA/β-TCP支架表面多孔结构的构建及其对细胞黏附的影响
4
作者 曾辉 郭芳 +4 位作者 黄硕 刘宁 郭亚媛 张予淇 刘昌奎 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2024年第3期428-434,共7页
目的通过NaOH溶液的简单处理构建3D打印PLLA/β-TCP骨组织工程支架表面多孔结构,增加支架的粗糙度和亲水性,促进支架表面的细胞黏附。方法通过3D打印熔融沉积成型技术制备PLLA/β-TCP网状支架,并通过NaOH蚀刻的方法进行支架的粗糙化改性... 目的通过NaOH溶液的简单处理构建3D打印PLLA/β-TCP骨组织工程支架表面多孔结构,增加支架的粗糙度和亲水性,促进支架表面的细胞黏附。方法通过3D打印熔融沉积成型技术制备PLLA/β-TCP网状支架,并通过NaOH蚀刻的方法进行支架的粗糙化改性,依据支架表面微观形貌、能谱、接触角、力学、细胞黏附等观察NaOH浓度、时间两项反应参数对支架的影响。结果通过熔融沉积成型技术制备的PLLA/β-TCP复合支架存在预先设置的网状结构;经NaOH蚀刻构建了兼有宏观和微观空隙的多孔形态。NaOH浓度、时间中任意一种参数的增加都会导致支架表面微观孔隙的孔径、孔密度增加。NaOH处理参数为0.1 mol/L(9 h)时,可显著减小支架表面水接触角,且对支架的压缩强度无显著影响。体外细胞检测显示,经NaOH蚀刻后的表面多孔复合支架在骨髓间充质干细胞(BMSCs)的黏附增殖上更具优势。结论用NaOH处理3D打印PLLA/β-TCP骨组织工程支架可有效改善支架表面形态,优化该类支架的亲水性及细胞黏附。 展开更多
关键词 plla/β-TCP 3D打印 骨组织工程支架 NAOH 细胞黏附
下载PDF
电纺PLLA/PCL复合纤维及其性能研究综合实验设计
5
作者 史同娜 朱冰洁 +2 位作者 施镇江 谢卫民 吴文华 《实验技术与管理》 CAS 北大核心 2023年第7期49-55,共7页
电纺左旋聚乳酸(PLLA)/聚己内酯(PCL)复合纤维综合实验的设计是教研结合初探的产物。该文通过静电纺丝法制备了PLLA/PCL复合纤维,对纤维的形貌、化学结构、结晶和体外降解性能进行了一系列表征测试及胆管上皮细胞的相容性实验,讨论了组... 电纺左旋聚乳酸(PLLA)/聚己内酯(PCL)复合纤维综合实验的设计是教研结合初探的产物。该文通过静电纺丝法制备了PLLA/PCL复合纤维,对纤维的形貌、化学结构、结晶和体外降解性能进行了一系列表征测试及胆管上皮细胞的相容性实验,讨论了组分配比对复合纤维形貌和结晶性能的影响,分析了复合纤维的降解趋势。细胞相容性实验证实了PLLA/PCL复合纤维适合胆管上皮细胞的生长,并初步探讨了PLLA/PCL复合纤维在组织工程人工胆管支架材料领域的应用前景。该综合实验可以培养学生的创新意识,激发学生的科研兴趣,提升学生的科学研究和实践能力。 展开更多
关键词 左旋聚乳酸 聚己内酯 静电纺丝 复合纤维 胆管支架材料
下载PDF
Synthesis and Structural Characterization of Hydroxyapatite-Wollastonite Biocomposites, Produced by an Alternative Sol-Gel Route 被引量:2
6
作者 Martín A. Encinas-Romero Jesús Peralta-Haley +1 位作者 Jesús L. Valenzuela-García Felipe F. Castillón-Barraza 《Journal of Biomaterials and Nanobiotechnology》 2013年第4期327-333,共7页
Hydroxyapatite is a type of calcium phosphate-based material with great interest for biomedical applications, due to the chemical similarity between this material and the mineral part of human bone. However, synthetic... Hydroxyapatite is a type of calcium phosphate-based material with great interest for biomedical applications, due to the chemical similarity between this material and the mineral part of human bone. However, synthetic hydroxyapatite is essentially brittle;the practice indicates that the use of hydroxyapatite without additives for implant production is not efficient, due to its low strength parameters. In the present work, biocomposites of hydroxyapatite-wollastonite were synthesized by an alternative sol-gel route, using calcium nitrate and ammonium phosphate as precursors of hydroxyapatite, and high purity natural wollastonite was added in ratios of 20, 50 and 80 percent by weight immersed in aqueous medium. Formation of hydroxyapatite occurs at a relatively low temperature of about 350?C, while the wollastonite remains unreacted. After that, these biocomposites were sintered at 1200?C for 5 h to produce dense materials. The characterization techniques demonstrated the presence of hydroxyapatite and wollastonite as unique phases in all products. 展开更多
关键词 HYDROXYAPATITE WOLLASTONITE BIOCERAMICS biocompositeS SOL-GEL
下载PDF
Performance of Unidirectional Biocomposite Developed with Piptadeniastrum Africanum Tannin Resin and Urena Lobata Fibers as Reinforcement 被引量:3
7
作者 Achille Gnassiri Wedaïna Antonio Pizzi +5 位作者 Wolfgang Nzie Raidandi Danwe Noel Konaï Siham Amirou Cesar Segovia Raphaël Kueny 《Journal of Renewable Materials》 SCIE EI 2021年第3期477-493,共17页
The Piptadeniastrum Africanum bark tannin extract was characterized using MALDI TOF,ATR-FT MIR.It was used in the development of a resin with Vachellia nilotica extract as a biohardener.This tannin is consisting of Ca... The Piptadeniastrum Africanum bark tannin extract was characterized using MALDI TOF,ATR-FT MIR.It was used in the development of a resin with Vachellia nilotica extract as a biohardener.This tannin is consisting of Catechin,Quercetin,Chalcone,Gallocatechin,Epigallocatechin gallate,Epicatechin gallate.The gel time of the resin at natural pH(pH=5.4)is 660 s and its MOE obtained by thermomechanical analysis is 3909 MPa.The tenacity of Urena lobata fibers were tested,woven into unidirectional mats(UD),and used as reinforcement in the development of biocomposite.The fibers tenacity at 20,30 and 50 mm lengths are respectively 65.41,41.04 and 33.86 cN·Tex^(−1).The UD biocomposite obtained had very interesting mechanical properties.Its density,tensile MOE,ultimate strength,bending MOE and MOR are respectively 926 kg·m^(−3),6 GPa,55 MPa,9.3 GPa and 68.3 MPa.This biocomposite can be used in a building exterior structure. 展开更多
关键词 Adhesive biocomposite fibers HARDENER MOE and MOR
下载PDF
Novel Mycelium-Based Biocomposites (MBB) as Building Materials 被引量:2
8
作者 Zinta Zimele Ilze Irbe +3 位作者 Juris Grinins Oskars Bikovens Anrijs Verovkins Diana Bajare 《Journal of Renewable Materials》 SCIE EI 2020年第9期1067-1076,共10页
Novel mycelium-based biocomposites(MBB)were obtained from local agricultural(hemp shives)and forestry(wood chips)by-products which were bounded together with natural growth of fungal mycelium.As a result,hemp mycocomp... Novel mycelium-based biocomposites(MBB)were obtained from local agricultural(hemp shives)and forestry(wood chips)by-products which were bounded together with natural growth of fungal mycelium.As a result,hemp mycocomposites(HMC)and wood mycocomposites(WMC)were manufactured.Mechanical,water absorption and biodegradation properties of MBB were investigated.MBB were characterized also by ash content and elemental composition.The results of MBB were compared with the reference materials such as the commercial MBB material manufactured by Ecovative®Design(EV),hemp magnesium oxychloride concrete(HC)and cemented wood wool panel(CW),manufactured by CEWOOD®.The mechanical properties of HMC and WMC showed that the bending strength difference was about 30%,with a better result for HMC.Compression strength was better for WMC by about 60%compared to that of HMC.The mechanical strength of HMC and HC materials was equal;both materials contained hemp shives but differed by the binding material.Water absorption and volumetric swelling tests showed that HMC and WMC could be considered as potential biosorbents.Ash content and elemental analysis showed that reference materials(CW,HC)contained significant amounts of inorganic compounds that decreased the biodegradation rate,compared to the case of HMC and WMC materials.The biodegradation results of HMC and WMC,after 12 weeks,revealed a mass loss(ML)above 70%,while in the case of EV,HC and CW,it was about 60%,17%and only 6%,respectively.MBB were completely biodegradable. 展开更多
关键词 Mycelium-based biocomposites(MBB) mechanical properties water absorption biodegradation
下载PDF
Fabrication and characterization of 3D printed biocomposite scaffolds based on PCL and zirconia nanoparticles 被引量:2
9
作者 Qifan Wang Zhiyong Ma +2 位作者 Ying Wang Linna Zhong Wenjia Xie 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第1期60-71,共12页
The application of three-dimensional printed polymer scaffolds in repairing bone defects is a promising strategy.Among them,polycaprolactone(PCL)scaffolds are widely studied due to their good processability and contro... The application of three-dimensional printed polymer scaffolds in repairing bone defects is a promising strategy.Among them,polycaprolactone(PCL)scaffolds are widely studied due to their good processability and controlled degradation rate.However,as an alternative graft for repairing bone defects,PCL materials have poor hydrophilicity,which is not conducive to cell adhesion and growth.In addition,the poor mechanical properties of PCL materials cannot meet the strength required to repair bone defects.In this paper,nano-zirconium dioxide(ZrO2)powder is embedded in PCL material through a meltmixing process,and a regular grid scaffold is constructed by 3D printing.The embedding of nanometer zirconium dioxide powder improves the hydrophilicity and water absorption of the composite scaffold,which is conducive to cell adhesion,proliferation and growth and is beneficial to the exchange of nutrients.Therefore,the PCL/ZrO2 composite scaffold showed better biological activity in vitro.At the same time,the PCL/ZrO2 composite material system significantly improves the mechanical properties of the scaffold.Among them,compared with the pure PCL scaffold,the Young’s modulus is increased by about 0.4 times,and the compressive strength is increased by about 0.5 times.In addition,the osteogenic differentiation results also showed that the PCL/ZrO2 composite scaffold group showed better ALP activity and more effective bone mineralization than the pure PCL group.We believe that the 3D printed PCL/ZrO2 composite scaffold has certain application prospects in repairing bone defects. 展开更多
关键词 3D printing Bone tissue engineering biocomposite scaffold Zirconium dioxide HYDROPHILICITY
下载PDF
Fabrication and characterization of hydroxyapatite/Al_2O_3 biocomposite coating on titanium 被引量:5
10
作者 吴振军 何莉萍 陈宗璋 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期259-266,共8页
A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic ... A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre-and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment, the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA. 展开更多
关键词 钛合金 生物复合材料 医用金属材料 羟磷灰石 氧化铝
下载PDF
Influence of Glycerol Content on Properties of Wheat Gluten/Hydroxyethyl Cellulose Biocomposites
11
作者 SONG Yi-hu ZHENG Qiang LIU Cheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期644-647,共4页
Environmentally friendly biocomposites were prepared by blending wheat gluten(WG)as a matrix, hydroxyethyl cellulose(HEC)as a filler,and glycerol as a plasticizer,followed by thermo-molding of the mixture at 120&#... Environmentally friendly biocomposites were prepared by blending wheat gluten(WG)as a matrix, hydroxyethyl cellulose(HEC)as a filler,and glycerol as a plasticizer,followed by thermo-molding of the mixture at 120°C for crosslinking the matrix.Moisture absorption,tensile properties,dynamic mechanical analysis,and dynamic rheology were evaluated in relation to the glycerol content.Tensile strength and modulus drop dramatically with increasing glycerol content,which is accompanied by significant depression in the glass transition temperature and improvement in the extensibility of the biocomposites. 展开更多
关键词 Wheat gluten Hydroxyethyl cellulose biocomposite
下载PDF
Nano-apatite/Polymer Biocomposite for Tissue Engineering
12
作者 魏杰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期126-128,共3页
A new kind of tissue engineering scaffold materials of nano-apatite ( NA ) and polyamide6 ( PA6 ) biocomposite was prepared by means of the co-solution method. The NA crystals uniforndy distribute in the composit... A new kind of tissue engineering scaffold materials of nano-apatite ( NA ) and polyamide6 ( PA6 ) biocomposite was prepared by means of the co-solution method. The NA crystals uniforndy distribute in the composite with a size of 10-30 nm in diameter by 50-90 nm in length. The NA/ PA6 composite has good homogeneity and high NA content, and excellent mechanical properties close to those of natural bone. The porous 3-D scaffold has not only macropores, but also micropores on the walls of macropores with porosity of about 80% and the size of pore diameter of about 300μm made by injection foam. The biocomposite can be used for bone repair and as scaffolds in tissue engineering. 展开更多
关键词 biocomposite nano apatite tissue engineering scaffold material
下载PDF
Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood(Bactris gasipaes) microparticles 被引量:1
13
作者 Edison E.Haro Jerzy A.Szpunar Akindele G.Odeshi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第3期238-249,共12页
The mechanical behavior of chonta palm wood(Bactris gasipaes) microparticles reinforced high density polyethylene(HDPE) under high strain-rate compressive and ballistic impact loading were investigated.The palm wood m... The mechanical behavior of chonta palm wood(Bactris gasipaes) microparticles reinforced high density polyethylene(HDPE) under high strain-rate compressive and ballistic impact loading were investigated.The palm wood microparticles were introduced into the HDPE via an extrusion process using parallel twin screw extruder to produce biocomposite containing 10, 20, 25, and 30 wt % chonta wood microparticles. In addition to mechanical tests, fractographic analysis was done to understand the failure mechanism in the biocomposites under dynamic and ballistic impact loads. The results indicate that both quasi-static and dynamic mechanical properties of HDPE are enhanced by reinforcement with chonta palm wood particles. The biocomposites containing 25 wt % wood microparticles exhibited the highest strength, stiffness, ballistic impact resistance and impact energy absorption capability. Introduction of microparticles of chonta palm wood as reinforcement into a polymeric matrix such as HDPE is therefore a promising method to develop biocomposites with enhanced capacity to withstand dynamic impact loading and absorb impact energy. 展开更多
关键词 HDPE 弹道 行为 盔甲 机械测试 吸收能力 密度聚乙烯 挤出过程
下载PDF
Study of the Thermal, Rheological, Morphological and Mechanical Properties of Biocomposites Based on Rod-Of Typha/HDPE Made up of Typha Stem and HDPE
14
作者 Babacar Niang El Hadj Babacar Ly +6 位作者 Abdou Karim Diallo Nicola Schiavone Haroutioun Askanian Vincent Verney Ansou Malang Badji Mahmoud Kalid Diakite Diéne Ndiaye 《Advances in Materials Physics and Chemistry》 2018年第9期340-357,共18页
The thermal, rheological and morphological properties of composite biomaterials made with mixture of high density polyethylene and typha rod powder (RD) were evaluated. The dynamic mechanical behavior of the samples w... The thermal, rheological and morphological properties of composite biomaterials made with mixture of high density polyethylene and typha rod powder (RD) were evaluated. The dynamic mechanical behavior of the samples was studied with 25%, 35% and 45% typha stem powder concentrations. The viscoelastic properties are mainly related to the nature of the polymer and the typha stem powder. Storage (G') and loss (G') moduli increased significantly, depending on the amount of powder in the molten mixture. After a viscosity increase was noticed in low frequency, it decreased in high frequencies, which demonstrates the pseudo-plasticity effect. Morphological and thermal characterization results have shown the dispersion state of the powder and its ability to modify the kinetics crystallization of biocomposites. 展开更多
关键词 biocomposite THERMAL RHEOLOGICAL MORPHOLOGICAL MECHANICAL Properties
下载PDF
Preparation and Characterization of Raw and Chemically Modified Sponge-Gourd Fiber Reinforced Polylactic Acid Biocomposites
15
作者 Taimur -Al-Mobarak Md. Abdul Gafur Md. Forhad Mina 《Materials Sciences and Applications》 2018年第2期281-304,共24页
This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically trea... This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically treated separately using 5 and 10 wt% NaOH, acetic anhydride and benzoyl chloride solutions. SGF reinforced polylactic acid (PLA) biocomposites were fabricated using melt compounding technique. Surface morphological, structural, mechanical and thermal properties, as well as antibacterial activities of raw and chemically modified SGF reinforced PLA (SGF-PLA) composites were characterized by field emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometry, universal testing method, thermogravimetry, and Kirby-Bauer agar diffusion method, respectively. Surface morphology indicates that after treatment of fibers, the interfacial adhesion between PLA and fibers is improved. X-ray diffractometry result shows that chemical treatment of fibers improves the crystallinity and exhibits new chemical bond formation in the composites. After chemical treatment, compressive strength of the composites is found to increase by 10% - 35%. The thermal stability of the treated fiber reinforced composites is also found to increase significantly. The composites have no antibacterial activities and no cytotoxic effect on non-cancer cell line. Soil burial test has confirmed that the composites are biodegradable. Benzoyl chloride treatment of fibers shows superior mechanical properties and enhances thermal stability among the composites. 展开更多
关键词 Sponge-Gourd Fiber Polylactic Acid Chemical MODIFICATION biocompositeS ANTIBACTERIAL Activities
下载PDF
Chitosan/Nanocrystalline Cellulose Biocomposites Based on Date Palm (Phoenix Dactylifera L.) Sheath Fibers
16
作者 Abeer M.Adel Amira M.El-Shafei +1 位作者 Atef A.Ibrahim Mona T.Al-Shemy 《Journal of Renewable Materials》 SCIE 2019年第6期567-582,共16页
In this study,nanocrystalline celluloses were used to enhance physical,mechanical and water vapor barrier properties of chitosan films for potential food packaging applications.Two different mineral acids(sulfuric and... In this study,nanocrystalline celluloses were used to enhance physical,mechanical and water vapor barrier properties of chitosan films for potential food packaging applications.Two different mineral acids(sulfuric and phosphoric)were used to extract nanocrystalline cellulose from date palm sheath fibers.The influence of cellulose I and cellulose II on the properties of the isolated nanocrystalline celluloses(e.g.,yield,energy and length of intra-and intermolecular hydrogen bonds,and degree of substitution)were studied too.The characteristics of chitosan biocomposite film with phosphorylated nanocrystalline cellulose were compared to those with sulfated nanocrystalline cellulose.Results showed that besides cellulose polymorphism,the ionic ester groups on the surface of nanocrystalline cellulose is one of the factors influencing the physical,chemical,mechanical,and water vapor barrier properties in chitosan/nanocrystalline cellulose biocomposites. 展开更多
关键词 biocomposite Cellulose I Cellulose II Nanocrystalline cellulose(NCC) physico-mechanical properties Thermal stability
下载PDF
Reactive Compatibilization of Short-Fiber Reinforced Poly(lactic acid)Biocomposites
17
作者 Phornwalan Nanthananon Manus Seadan +2 位作者 Sommai Pivsa-Art Hiroyuki Hamada Supakij Suttiruengwong 《Journal of Renewable Materials》 SCIE 2018年第6期573-583,共11页
Poor interfacial adhesion between biobased thermoplastics and natural fibers is recognized as a major drawback for biocomposites.To be applicable for the large-scale production,a simple method to handle is of importan... Poor interfacial adhesion between biobased thermoplastics and natural fibers is recognized as a major drawback for biocomposites.To be applicable for the large-scale production,a simple method to handle is of importance.This work presented poly(lactic acid)(PLA)reinforced with short-fiber and three reactive agents including anhydride and epoxide groups were selected as compatibilizers.Biocomposites were prepared by one-step meltmixing methods.The influence of reactive agents on mechanical,dynamic mechanical properties and morphology of PLA biocomposites were investigated.Tensile strength and storage modulus of PLA biocomposites incorporated with epoxide-based reactive agent was increased 13.9%and 37.4%compared to non-compatibilized PLA biocomposite,which was higher than adding anhydride-based reactive agent.SEM micrographs and Molau test exhibited an improvement of interfacial fiber-matrix adhesion in the PLA biocomposites incorporated with epoxide-based reactive agent.FTIR revealed the chemical reaction between the fiber and PLA with the presence of epoxide-based reactive agents. 展开更多
关键词 biocomposite poly(lactic acid) Reactive agent in situ compatibilization interfacial adhesion
下载PDF
Hybrid Method for the Formation of Biocomposites on the Surface of Stainless Steel Implants
18
作者 Sergei I. Tverdokhlebov Viktor P. Ignatov +2 位作者 Igor B. Stepanov Denis O. Sivin Danila G. Petlin 《Engineering(科研)》 2012年第10期613-618,共6页
This study reports a hybrid method which allows the formation of biocomposites on stainless steel implants. The main idea of the method is to create multilayer coatings consisting of titanium primer layer and a microa... This study reports a hybrid method which allows the formation of biocomposites on stainless steel implants. The main idea of the method is to create multilayer coatings consisting of titanium primer layer and a microarc calcium-phosphate coating. The titanium layer is deposited from plasma of continuous vacuum-arc discharge, and calcium-phosphate coating is formed by the microarc oxidation technique. The purpose of the hybrid method is to combine the properties of good strength stainless steel with high bioactivity of calcium-phosphate coating. This paper describes the chemical composition, morphology characteristics, adhesion and the ability of the formed biocomposites to stimulate the processes of osteoinduction. It is expedient to use such biocomposites for implants which carry heavy loads and are intended for long-term use, e.g. total knee endoprosthesis. 展开更多
关键词 biocomposite STAINLESS Steel Titanium VACUUM-ARC Deposition of Coatings SHORT-PULSE High-Frequency Plasma-Immersion Ion Implantation Microarc Oxidation Implant
下载PDF
Utilization of Sweet Potato Starch for Producing Biocomposite Semiconductor Materials
19
作者 Hen Hermansyah Zayyanatun Zulfa Slamet Nuryeti M. Nasikin 《Journal of Chemistry and Chemical Engineering》 2013年第1期26-33,共8页
关键词 生物复合材料 半导体材料 红薯淀粉 淀粉生产 扫描电子显微镜 半导体性能 甘油浓度 X-射线衍射
下载PDF
Microstructure and phase composition of Ti-based biocomposites with different contents of nano-hydroxyapatite
20
作者 李卫 庞鹏沙 刘英 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期1148-1151,共4页
Nano-hydroxyapatite(nHA) and titanium(Ti) powders with different ratios were prepared by mechanical ball milling,and then sintered in vacuum environment. The microstructure and phase composition of Ti-based biocomposi... Nano-hydroxyapatite(nHA) and titanium(Ti) powders with different ratios were prepared by mechanical ball milling,and then sintered in vacuum environment. The microstructure and phase composition of Ti-based biocomposites with different contents of nHA(5% and 10%,in volume fraction) were investigated. Meanwhile,the phase composition of pure Ti was studied for contrast. The results show that Ti phase forms a finer continuous network microstructure with few porous after milling and sintering. The higher amount of nHA powders are added,the higher amount of porous are achieved,while the fracture morphology becomes coarser. The specimen with contents of 10% nHA has serious interface reaction after sintering at 1 100 ℃,it varies with the pure Ti specimen. Combined with the XRD and EDS analysis,it can be founded that elements Ca,P,O and Ti diffuse on the interface,and the phases of Ti,Ti2O,Ti5P3,CaTiO3 and TiOx can be ascertained in nHA/Ti composites. 展开更多
关键词 生物材料 纳米羟磷灰石 微观结构 界面反应
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部