Air pollution control has always been a global challenge, and significant progress has been made in recent years in controlling air pollutants. However, in some major cities, air pollutant concentrations still exceed ...Air pollution control has always been a global challenge, and significant progress has been made in recent years in controlling air pollutants. However, in some major cities, air pollutant concentrations still exceed the standards. Some scholars have used linear models or conditional autoregressive iterative models to apply the VaR method to predict pollutant concentrations. However, traditional methods based on quantile regression estimation can lead to inadequate risk estimates. Therefore, we propose a method based on the Conditional Autoregressive Value at Risk (CAViaR) model, which uses the kth power expectile regression to estimate VaR. This method does not specify the type of the distribution of data, is easier to calculate the asymptotic variance, more sensitive to extreme values. Applying our method to the data of PM10 in Beijing, we investigate the fitting effects in the case of k = 1, k = 2, and k = 1.9 through predictive tests. The results show that the kth power expectile regression estimates are better than quantile and expectile regression estimates to some extent.展开更多
This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guide...This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guidelines step-by-step approach. The study focuses on evaluating the potential environmental impact of cement dust fugitive emissions from 176 cement silos located in 25 concrete batching facilities in the M35 Mussafah industrial area of Abu Dhabi, UAE. Emission factors are crucial for quantifying the PM<sub>10</sub> emission rates (g/s) that support developing source-specific emission estimates for areawide inventories to identify major sources of pollution that provide screening sources for compliance monitoring and air dispersion modeling. This requires data to be collected involves information on production, raw material usage, energy consumption, and process-related details, this was obtained using various methods, including field visits, surveys, and interviews with facility representatives to calculate emission rates accurately. Statistical analysis was conducted on cement consumption and emission rates for controlled and uncontrolled sources of the targeted facilities. The data shows that the average cement consumption among the facilities is approximately 88,160 (MT/yr), with a wide range of variation depending on the facility size and production rate. The emission rates from controlled sources have an average of 4.752E<sup>-04</sup> (g/s), while the rates from uncontrolled sources average 0.6716 (g/s). The analysis shows a significant statistical relationship (p < 0.05) and perfect positive correlation (r = 1) between cement consumption and emission rates, indicating that as cement consumption increases, emission rates tend to increase as well. Furthermore, comparing the emission rates from controlled and uncontrolled scenarios. The data showed a significant difference between the two scenarios, highlighting the effectiveness of control measures in reducing PM<sub>10</sub> emissions. The study’s findings provide insights into the impact of cement silo emissions on air quality and the importance of implementing control measures in concrete batching facilities. The comparative analysis contributes to understanding emission sources and supports the development of pollution control strategies in the Ready-Mix industry.展开更多
文摘Air pollution control has always been a global challenge, and significant progress has been made in recent years in controlling air pollutants. However, in some major cities, air pollutant concentrations still exceed the standards. Some scholars have used linear models or conditional autoregressive iterative models to apply the VaR method to predict pollutant concentrations. However, traditional methods based on quantile regression estimation can lead to inadequate risk estimates. Therefore, we propose a method based on the Conditional Autoregressive Value at Risk (CAViaR) model, which uses the kth power expectile regression to estimate VaR. This method does not specify the type of the distribution of data, is easier to calculate the asymptotic variance, more sensitive to extreme values. Applying our method to the data of PM10 in Beijing, we investigate the fitting effects in the case of k = 1, k = 2, and k = 1.9 through predictive tests. The results show that the kth power expectile regression estimates are better than quantile and expectile regression estimates to some extent.
文摘This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guidelines step-by-step approach. The study focuses on evaluating the potential environmental impact of cement dust fugitive emissions from 176 cement silos located in 25 concrete batching facilities in the M35 Mussafah industrial area of Abu Dhabi, UAE. Emission factors are crucial for quantifying the PM<sub>10</sub> emission rates (g/s) that support developing source-specific emission estimates for areawide inventories to identify major sources of pollution that provide screening sources for compliance monitoring and air dispersion modeling. This requires data to be collected involves information on production, raw material usage, energy consumption, and process-related details, this was obtained using various methods, including field visits, surveys, and interviews with facility representatives to calculate emission rates accurately. Statistical analysis was conducted on cement consumption and emission rates for controlled and uncontrolled sources of the targeted facilities. The data shows that the average cement consumption among the facilities is approximately 88,160 (MT/yr), with a wide range of variation depending on the facility size and production rate. The emission rates from controlled sources have an average of 4.752E<sup>-04</sup> (g/s), while the rates from uncontrolled sources average 0.6716 (g/s). The analysis shows a significant statistical relationship (p < 0.05) and perfect positive correlation (r = 1) between cement consumption and emission rates, indicating that as cement consumption increases, emission rates tend to increase as well. Furthermore, comparing the emission rates from controlled and uncontrolled scenarios. The data showed a significant difference between the two scenarios, highlighting the effectiveness of control measures in reducing PM<sub>10</sub> emissions. The study’s findings provide insights into the impact of cement silo emissions on air quality and the importance of implementing control measures in concrete batching facilities. The comparative analysis contributes to understanding emission sources and supports the development of pollution control strategies in the Ready-Mix industry.