Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR), collec- tively referred to as (Q)SARs, play an important role in ecological risk assessment (ERA) of organic chemicals. (Q...Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR), collec- tively referred to as (Q)SARs, play an important role in ecological risk assessment (ERA) of organic chemicals. (Q)SARs can fill the data gap for physical-chemical, environmental behavioral and ecotoxicological parameters of organic compounds; they can decrease experimental expenses and reduce the extent of experimental testing (especially animal testing); they can also be used to assess the uncertainty of the experimental data. With the development for several decades, (Q)SARs in envi- ronmental sciences show three features: application orientation, multidisciplinary integration, and in- telligence. Progress of (Q)SAR technology for ERA of toxic organic compounds, including endpoint selection and mathematic methods for establishing simple, transparent, easily interpretable and portable (Q)SAR models, is reviewed. The recent development on defining application domains and diagnosing outliers is summarized. Model characterization with respect to goodness-of-fit, stability and predictive power is specially presented. The purpose of the review is to promote the development of (Q)SARs orientated to ERA of organic chemicals.展开更多
基金Supported by the National Basic Research Program (973) of China (Grant No. 2006CB403302)
文摘Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR), collec- tively referred to as (Q)SARs, play an important role in ecological risk assessment (ERA) of organic chemicals. (Q)SARs can fill the data gap for physical-chemical, environmental behavioral and ecotoxicological parameters of organic compounds; they can decrease experimental expenses and reduce the extent of experimental testing (especially animal testing); they can also be used to assess the uncertainty of the experimental data. With the development for several decades, (Q)SARs in envi- ronmental sciences show three features: application orientation, multidisciplinary integration, and in- telligence. Progress of (Q)SAR technology for ERA of toxic organic compounds, including endpoint selection and mathematic methods for establishing simple, transparent, easily interpretable and portable (Q)SAR models, is reviewed. The recent development on defining application domains and diagnosing outliers is summarized. Model characterization with respect to goodness-of-fit, stability and predictive power is specially presented. The purpose of the review is to promote the development of (Q)SARs orientated to ERA of organic chemicals.