针对锂电池极片表面的痕类缺陷检测准确率低、误检率和漏检率高的问题,提出了一种基于局部最优化的随机抽样一致性(locally optimized random sample consensus,LO-RANSAC)的痕类缺陷检测算法。首先,针对锂电池极片表面存在的椒盐噪声...针对锂电池极片表面的痕类缺陷检测准确率低、误检率和漏检率高的问题,提出了一种基于局部最优化的随机抽样一致性(locally optimized random sample consensus,LO-RANSAC)的痕类缺陷检测算法。首先,针对锂电池极片表面存在的椒盐噪声、大噪点多的问题,提出了一种改进的自适应中值滤波和基于连通域的滤波算法。其次,针对检测痕类缺陷准确率达不到预期以及误检率漏检率较高的问题,引入一种局部最优化的RANSAC算法。最后,给出了一种基于LO-RANSAC的痕类缺陷分类方法。实验结果表明:本文所提算法相较于标准RANSAC检测准确率提高了5.9%,相较于基于卷积神经网络算法准确率提高了15%,达到了98.2%;多种算法中本工作算法对于痕类缺陷的检测误检率和漏检率最低;平均检测速度较标准RANSAC算法提高了1.7倍,每秒钟检测的图片数量FPS(frame per second)达到12.49。本工作算法具有较高的检测准确率、较低的误检率及漏检率,检测速度达到实时检测要求,因此可满足锂电池极片表面的痕类缺陷检测需求,解决了锂电池极片表面痕类缺陷自动检测难题。展开更多
文摘针对锂电池极片表面的痕类缺陷检测准确率低、误检率和漏检率高的问题,提出了一种基于局部最优化的随机抽样一致性(locally optimized random sample consensus,LO-RANSAC)的痕类缺陷检测算法。首先,针对锂电池极片表面存在的椒盐噪声、大噪点多的问题,提出了一种改进的自适应中值滤波和基于连通域的滤波算法。其次,针对检测痕类缺陷准确率达不到预期以及误检率漏检率较高的问题,引入一种局部最优化的RANSAC算法。最后,给出了一种基于LO-RANSAC的痕类缺陷分类方法。实验结果表明:本文所提算法相较于标准RANSAC检测准确率提高了5.9%,相较于基于卷积神经网络算法准确率提高了15%,达到了98.2%;多种算法中本工作算法对于痕类缺陷的检测误检率和漏检率最低;平均检测速度较标准RANSAC算法提高了1.7倍,每秒钟检测的图片数量FPS(frame per second)达到12.49。本工作算法具有较高的检测准确率、较低的误检率及漏检率,检测速度达到实时检测要求,因此可满足锂电池极片表面的痕类缺陷检测需求,解决了锂电池极片表面痕类缺陷自动检测难题。