期刊文献+
共找到516,499篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
1
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
2
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites mechanical properties Thermal properties mechanical stirrer Sonication
下载PDF
Effects of increased seeding density on seedling characteristics,mechanical transplantation quality,and yields of rice with crop straw boards for seedling cultivation
3
作者 Yufei Ling Mengzhu Liu +5 位作者 Yuan Feng Zhipeng Xing Hui Gao Haiyan Wei Qun Hu Hongcheng Zhang 《Journal of Integrative Agriculture》 2025年第1期101-113,共13页
The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate dur... The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality. 展开更多
关键词 machine-transplanted rice crop straw board seedling rate seedling quality mechanical transplanta quality yield
下载PDF
Microstructure and mechanical properties of Ti-45Al-5.5(Cr,Nb,B,Ta) alloy sintered at different SPS temperatures 被引量:3
4
作者 肖树龙 徐丽娟 +2 位作者 于宏宝 田竟 陈玉勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2960-2964,共5页
TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure a... TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure and mechanical properties after heat treatment of TiAl alloy prepared by SPS at different temperatures were studied. The results showed that the morphology of high energy mechanically milled powder was irregular and the average grain size was about decades micrometers. X-ray diffraction analysis showed that the mechanically milled powder was composed of two phases of TiAl and Ti3Al. The main phase of TiAl and few phases of Ti3Al and TiB2 were observed in the SPS bulk samples of Ti-45Al-5.5(Cr,Nb,B,Ta) alloy. For samples sintered at 900 °C and 1000 °C, the microstructure was duplex structure with some fine equiaxed gamma grains and thin needly TiB2 phases. With the SPS temperature increasing from 900 °C to 1000 °C, the micro-hardness was changed little, the compression strength increased from 1812 MPa to 2275 MPa and the compression ratio increased from 22.66% to 25.59%. The fractography results showed that the compression fracture transform of the SPS Ti-45Al-5.5(Cr,Nb,B,Ta) alloy was rgranular rupture. 展开更多
关键词 TiAl alloy powder metallurgy spark plasma sintering (sps) heat treatment
下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
5
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY STRUCTURAL mechanISMS
下载PDF
Effect of Ti Additions on Mechanical and Thermodynamic Properties of W-Ti Alloys: A First-principles Study
6
作者 ZHANG Jian NIE Wei +5 位作者 HUANG Jin ZHU Ke LIU Ruxia ZHANG Ruizhi LUO Guoqiang SHEN Qiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期246-257,共12页
The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.... The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys. 展开更多
关键词 FIRST-PRINCIPLES mechanical properties thermodynamic properties tungsten-titanium alloys
下载PDF
Depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite
7
作者 Feng Zhang Chenyang Zhang +5 位作者 Linlin Wu Wei Sun Hongliang Zhang Jianhua Chen Yong Pei Songjiang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期335-345,共11页
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ... The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite. 展开更多
关键词 spHALERITE GALENA sulfite ion density functional theory depression mechanism
下载PDF
Efficient chemical mechanical polishing of W promoted by Fenton-like reaction between Cu^(2+)and H_(2)O_(2)
8
作者 Hong-yu CHEN Lin WANG +7 位作者 Feng PENG Meng-meng SHEN Wei HANG Tufa Habtamu BERI Hui-bin ZHANG Jun ZHAO Yun-xiao HAN Bing-hai LÜ 《中国有色金属学报》 北大核心 2025年第1期257-270,共14页
The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate o... The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy,X-ray photoelectron spectroscopy,ultraviolet−visible spectrophotometry,and electrochemical experiments.The passivation behavior and material removal mechanism were discussed.Results show that the use of mixed H_(2)O_(2)+Cu(NO_(3))_(2)oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO_(3))_(2)or H_(2)O_(2).The increase in material removal rate is attributed to the rapid oxidation of W into WO_(3)via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction.In addition,material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO_(3))_(2),while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.%H_(2)O_(2)+1.0 wt.%Cu(NO_(3))_(2). 展开更多
关键词 chemical mechanical polishing TUNGSTEN Fenton-like reaction hydroxyl radical material removal mechanism
下载PDF
Microstructure characteristics and mechanical properties of TiB/Ti-1.5Fe-2.25Mo composites synthesized in situ using SPS process
9
作者 张朝晖 神祥博 +3 位作者 王富耻 魏赛 李树奎 才鸿年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2598-2604,共7页
TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro... TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite. 展开更多
关键词 titanium boride (TiB) titanium matrix composites (TMCs) spark plasma sintering (sps microstructure mechanicalproperties
下载PDF
Mechanical Properties of Railway High-strength Manufactured Sand Concrete: Typical Lithology, Stone Powder Content and Strength Grade
10
作者 WANG Zhen LI Huajian +3 位作者 HUANG Fali YANG Zhiqiang WEN Jiaxin SHI Henan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期194-203,共10页
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li... In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed. 展开更多
关键词 manufactured sand concrete RAILWAY mechanical property LITHOLOGY stone powder content
下载PDF
Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:a comparative analysis 被引量:3
11
作者 Guolong Zhao Biao Zhao +5 位作者 Wenfeng Ding Lianjia Xin Zhiwen Nian Jianhao Peng Ning He Jiuhua Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期190-271,共82页
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su... The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed. 展开更多
关键词 difficult-to-cut materials geometrically complex components nontraditional energy mechanical machining aerospace community
下载PDF
Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
12
作者 Fei Weng Guijun Bi +5 位作者 Youxiang Chew Shang Sui Chaolin Tan Zhenglin Du Jinlong Su Fern Lan Ng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期154-168,共15页
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci... The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition. 展开更多
关键词 laser-aided additive manufacturing powder deposition wire deposition interfacial characteristic mechanical behavior
下载PDF
Gut-brain axis as a bridge in obesity and depression:Mechanistic exploration and therapeutic prospects
13
作者 Rui-Ying Fang Xiao-Rui Pan +4 位作者 Xin-Xing Zeng Zheng-Zheng Li Bo-Fan Chen Hai-Min Zeng Jie Peng 《World Journal of Psychiatry》 SCIE 2025年第1期12-20,共9页
A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way commu... A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way communication system between the gastrointestinal tract and the central nervous system,plays a pivotal role in the pathogenesis of these conditions.Evidence suggests that metabolic byproducts,such as short-chain fatty acids,lipopolysaccharide and bile acids,which are generated by the gut microbiota,along with neurotransmitters and inflammatory mediators within the gut-brain axis,modulate the host's metabolic processes,neuronal regulation,and immune responses through diverse mechanisms.The interaction between obesity and depression via the gut-brain axis involves disruptions in the gut microbiota balance,inflammatory immune responses,and alterations in the neuroendocrine system.Modulating the gut-brain axis,for example,through a ketogenic diet,the use of probiotics,and the supplementation of antioxidants,offers new remedial approaches for obesity and depression.Future research that explores the mechanisms of the gut-brain axis is needed to provide more evidence for clinical treatment. 展开更多
关键词 Gut-brain axis OBESITY DEPRESSION Gut microbiota mechanism
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
14
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
A novel solution treatment and aging for powder bed fusion-laser beam Ti-6Al-2Sn-4Zr-6Mo alloy:Microstructural and mechanical characterization
15
作者 Gianluca Pirro Alessandra Martucci +2 位作者 Alessandro Morri Mariangela Lombardi Lorella Ceschini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期414-424,共11页
Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applicati... Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms. 展开更多
关键词 powder bed fusion-laser beam titanium alloys heat treatments mechanical properties fractographic analysis
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance 被引量:1
16
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY mechanical properties Corrosion
下载PDF
Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression
17
作者 Qian Yin Fan Wen +7 位作者 Zhigang Tao Hai Pu Tianci Deng Yaoyao Meng Qingbin Meng Hongwen Jing Bo Meng Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期311-324,共14页
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio... The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure. 展开更多
关键词 cemented gangue backfill materials particle size distribution true triaxial compression test carbon nanotubes mechanical properties failure modes
下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
18
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
下载PDF
Processing,microstructure,and mechanical properties of wire arc additively-manufactured AZ91 magnesium alloy using cold arc process
19
作者 Bai-hao CAI Ji-kang FAN +3 位作者 Jie LI Dong-qing YANG Yong PENG Ke-hong WANG 《中国有色金属学报》 北大核心 2025年第1期91-104,共14页
Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties... Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6. 展开更多
关键词 AZ91 magnesium alloy droplet transfer MICROSTRUCTURE mechanical properties cold arc process
下载PDF
Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading 被引量:1
20
作者 Xuanming Cai Yang Hou +6 位作者 Wei Zhang Zhiqiang Fan Yubo Gao Junyuan Wang Heyang Sun Zhujun Zhang Wenshu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期737-749,共13页
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur... Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization. 展开更多
关键词 AlSi10Mg additive manufacture energy absorption characteristics damage by deformation mechanical behavior
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部