A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catal...A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catalyst exhibit a higher benzene hydroxylation activity compared with that within multi-walled carbon nanotubes.展开更多
The adsorptions of rare-earth (RE) atoms on (6, 0) and (8, 0) single-walled carbon nanotubes (SWCNTs) have been investigated by using the first-principles pseudopotential plane wave method within density funct...The adsorptions of rare-earth (RE) atoms on (6, 0) and (8, 0) single-walled carbon nanotubes (SWCNTs) have been investigated by using the first-principles pseudopotential plane wave method within density functional theory (DFT). The binding energy, Mulliken charge, magnetic properties, band structure and DOS were calculated and analyzed. Most of RE atoms including Nd, Sm and Eu have a magnetic ground state with a significant magnetic moment. Some electrons transfer between RE-5d, 6s and C-2p orbitals. Owing to the curvature effect, the values of binding energy for RE atoms doped (6, 0) SWCNT are lower than those of the same atoms on (8, 0) SWCNT. The pictures of DOS show that hybridizations between RE-5d, 6s states and C-2p orbitals and between RE-4f and C-2p orbitals appear near the Fermi level. Results indicate that the properties of SWCNTs can be modified by the adsorptions of RE atoms.展开更多
In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple st...In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).展开更多
The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homog...The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneousheterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst.Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.展开更多
Tungsten is one of the best candidates for plasma-facing components in fusion reactors owing to its unique properties. But disadvantages such as its brittleness and high ductile-to-brittle transition temperature have ...Tungsten is one of the best candidates for plasma-facing components in fusion reactors owing to its unique properties. But disadvantages such as its brittleness and high ductile-to-brittle transition temperature have restricted its fusion energy application. Single-walled carbon nanotubes (SWCNTs) have the potential to be used as reinforcements due to their excellent mechanical properties. A new method of modifying the properties of tungsten by doping with SWCNTs was introduced. An efficient way of dispersing SWCNTs into the tungsten matrix with strong interfaces by heterocoagulation and ultrasonication was employed, and hot explosive compaction (HEC) technology was selected to compact and sinter the composite powders. The sintering properties, microstructure, densification effect, thermal conductivity, hardness and fracture toughness of the obtained SWCNTs/W bulk samples were tested, and compared with pure tungsten. The influences of SWCNTs on these properties and the main toughening mechanism of SWCNTs in a tungsten matrix were discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 21173215, 21033009 and 11079005)
文摘A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catalyst exhibit a higher benzene hydroxylation activity compared with that within multi-walled carbon nanotubes.
文摘The adsorptions of rare-earth (RE) atoms on (6, 0) and (8, 0) single-walled carbon nanotubes (SWCNTs) have been investigated by using the first-principles pseudopotential plane wave method within density functional theory (DFT). The binding energy, Mulliken charge, magnetic properties, band structure and DOS were calculated and analyzed. Most of RE atoms including Nd, Sm and Eu have a magnetic ground state with a significant magnetic moment. Some electrons transfer between RE-5d, 6s and C-2p orbitals. Owing to the curvature effect, the values of binding energy for RE atoms doped (6, 0) SWCNT are lower than those of the same atoms on (8, 0) SWCNT. The pictures of DOS show that hybridizations between RE-5d, 6s states and C-2p orbitals and between RE-4f and C-2p orbitals appear near the Fermi level. Results indicate that the properties of SWCNTs can be modified by the adsorptions of RE atoms.
文摘In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).
文摘The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneousheterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst.Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.
基金the Chinese National Magnetic Confnement Fusion Program (No.2010GB109000)the National Natural Science Foundation of China (No.51172016)the Opening Research Issues of Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials (No.2010-WT-04)
文摘Tungsten is one of the best candidates for plasma-facing components in fusion reactors owing to its unique properties. But disadvantages such as its brittleness and high ductile-to-brittle transition temperature have restricted its fusion energy application. Single-walled carbon nanotubes (SWCNTs) have the potential to be used as reinforcements due to their excellent mechanical properties. A new method of modifying the properties of tungsten by doping with SWCNTs was introduced. An efficient way of dispersing SWCNTs into the tungsten matrix with strong interfaces by heterocoagulation and ultrasonication was employed, and hot explosive compaction (HEC) technology was selected to compact and sinter the composite powders. The sintering properties, microstructure, densification effect, thermal conductivity, hardness and fracture toughness of the obtained SWCNTs/W bulk samples were tested, and compared with pure tungsten. The influences of SWCNTs on these properties and the main toughening mechanism of SWCNTs in a tungsten matrix were discussed.