Two-axis transportable satellite antennas(TATSAs) have been widely adopted owing to its simple structure and low cost. However, by searching in a wide range, it will take a very long searching time. Under extreme cond...Two-axis transportable satellite antennas(TATSAs) have been widely adopted owing to its simple structure and low cost. However, by searching in a wide range, it will take a very long searching time. Under extreme conditions, it will even fail to work. In this paper, we propose a novel roll compensation(RC) method for the low-cost TATSAs to achieve faster tracking even if when the antenna has no azimuth sensor. By analyzing the influence of roll axis on the system performance, details of the compensation method are derived. Simulation and measurement results indicate that the proposed RC method can effectively reduce the initial searching time for satellite communication. In addition, tracking along with the ellipse path with the RC method provides the highest tracking efficiency.展开更多
基金jointly sponsored by scientific research foundation NUPTSF(Grant No.NY-214144 and Grant No.NY-215073)NSFC(Grant No.61701260)
文摘Two-axis transportable satellite antennas(TATSAs) have been widely adopted owing to its simple structure and low cost. However, by searching in a wide range, it will take a very long searching time. Under extreme conditions, it will even fail to work. In this paper, we propose a novel roll compensation(RC) method for the low-cost TATSAs to achieve faster tracking even if when the antenna has no azimuth sensor. By analyzing the influence of roll axis on the system performance, details of the compensation method are derived. Simulation and measurement results indicate that the proposed RC method can effectively reduce the initial searching time for satellite communication. In addition, tracking along with the ellipse path with the RC method provides the highest tracking efficiency.