目前,ToF(Time of Flight)三维成像技术在人脸检测、3D目标识别、三维重建等视觉任务领域具有广阔的应用前景。然而,用ToF相机所获得的深度信息往往存在与像素、温度、深度畸变、多径干扰以及背景光相关的噪声干扰。现有的ToF优化算法...目前,ToF(Time of Flight)三维成像技术在人脸检测、3D目标识别、三维重建等视觉任务领域具有广阔的应用前景。然而,用ToF相机所获得的深度信息往往存在与像素、温度、深度畸变、多径干扰以及背景光相关的噪声干扰。现有的ToF优化算法耗时较大且很难保留目标的细节信息,这些问题严重影响了ToF相机的实际应用。针对以上问题,本文提出一种实时的基于振幅图的ToF深度图优化方法。首先通过ToF接收端采集的原始数据生成带有噪声的振幅图像。针对振幅图中的噪声,选用快速高效的双边网格滤波对振幅图进行去噪。然后,利用优化后的振幅图生成掩码以分割出深度图中前景和背景区域。同时,对深度图中的噪声以及误差像素用滤波的方式优化,最后将优化后的深度图和掩码融合生成最终的深度图。实验结果表明,本文所提算法可以实时有效地滤除深度图噪声,去除背景噪声的干扰,同时能很好地保留深度图中目标对象的细节信息。有助于ToF相机拥有更广泛的应用场景。展开更多
文摘目前,ToF(Time of Flight)三维成像技术在人脸检测、3D目标识别、三维重建等视觉任务领域具有广阔的应用前景。然而,用ToF相机所获得的深度信息往往存在与像素、温度、深度畸变、多径干扰以及背景光相关的噪声干扰。现有的ToF优化算法耗时较大且很难保留目标的细节信息,这些问题严重影响了ToF相机的实际应用。针对以上问题,本文提出一种实时的基于振幅图的ToF深度图优化方法。首先通过ToF接收端采集的原始数据生成带有噪声的振幅图像。针对振幅图中的噪声,选用快速高效的双边网格滤波对振幅图进行去噪。然后,利用优化后的振幅图生成掩码以分割出深度图中前景和背景区域。同时,对深度图中的噪声以及误差像素用滤波的方式优化,最后将优化后的深度图和掩码融合生成最终的深度图。实验结果表明,本文所提算法可以实时有效地滤除深度图噪声,去除背景噪声的干扰,同时能很好地保留深度图中目标对象的细节信息。有助于ToF相机拥有更广泛的应用场景。