为解决SWAT(soil and water assessment tool)模型在复杂情形下的参数不确定性分析问题,引入参数不确定性分析平台UQ-PyL(Uncertainty Quantification Python Laboratory),开发UQ-PyL与SWAT模型的耦合模块,使得UQ-PyL中的各种算法能够...为解决SWAT(soil and water assessment tool)模型在复杂情形下的参数不确定性分析问题,引入参数不确定性分析平台UQ-PyL(Uncertainty Quantification Python Laboratory),开发UQ-PyL与SWAT模型的耦合模块,使得UQ-PyL中的各种算法能够方便快捷地应用于SWAT模型的参数不确定性分析。为验证UQ-PyL用于SWAT模型参数不确定性分析的效果,在我国不同气候条件下的4个流域构建SWAT模型,综合对比评估UQ-PyL与SWAT-CUP对模型参数的不确定性分析结果。结果表明:UQ-PyL多种敏感性分析方法筛选出的敏感参数比SWAT-CUP单一方法筛选的结果更加合理;使用UQ-PyL率定的参数在4个流域应用中都表现良好,优化后模拟结果的纳什效率系数均在0.55以上,收敛次数在550次以内;在4个流域的模拟中,UQ-PyL能提供计算效率更高的算法ASMO,也能提供模拟结果更准确的算法SCE。综上,与SWAT模型相耦合的UQ-PyL能够支持SWAT模型用户在不同系统下对模型参数进行更高效的不确定性分析研究。展开更多
应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强...应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强度因子的框架下,引入随机参数进行蒙特卡罗模拟(Monte Carlo simulation, MCS),并提出一种新颖的基于MCS的不确定量化分析。与直接的MCS不同,采用奇异值分解构造低阶的子空间,降低系统的自由度,并使用径向基函数对子空间进行近似,通过子空间的线性组合获得新的结构响应,实现基于MCS的快速不确定量化分析。考虑不同荷载状况下,结构形状参数和材料属性参数对应力强度因子的影响,使用改进的MCS计算应力强度因子的统计特征,量化不确定参数对结构的影响。最后通过若干算例验证了该算法的准确性和有效性。展开更多
As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-...As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method.展开更多
In this paper, two modified QUICK schemes, namely Q-QUICK and UQ-QUICK, for improving the preci-sion of convective flux approximation are verified in advection-diffusion equation of pollutants on unstruc-tured grids. ...In this paper, two modified QUICK schemes, namely Q-QUICK and UQ-QUICK, for improving the preci-sion of convective flux approximation are verified in advection-diffusion equation of pollutants on unstruc-tured grids. The constructed auxiliary nodes for Q-QUICK/UQ-QUICK are composed of two neighboring nodes plus the next upwind node, the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces. 2D unsteady advection-diffusion equation of pollut-ants is conducted for their verifications on unstructured grids. The numerical results show that Q-QUICK and UQ-QUICK have similar computational accuracy to the central difference scheme and similar numerical stability to upwind difference scheme after applying the deferred correction method. In addition, their corre-sponding CPU times are approximately equivalent to those of traditional difference schemes and their abili-ties for adapting high grid deformation are robust.展开更多
A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) a...A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) and Standard Deviation (SD) are evaluated by solving the PC coefficients from a linear system of algebraic equations. The one-dimensional PC with the Legendre polynomials is applied to: (1) stochastic input domain and (2) Cumulative Distribution Function (CDF) image domain, allowing for more flexibility. The PC method is validated with the Monte-Carlo benchmark results in several high-fidelity, CFD-based, ship UQ problems, evaluating the geometrical, operational and environmental uncertainties for the Delft Catamaran 372. Convergence is studied versus PC order P for both EV and SD, showing that high order PC is not necessary for present applications. Comparison is carried out for PC with/without the least square minimization when solving the PC coefficients. The least square minimization, using larger number of CFD samples, is recommended for current test cases. The study shows the potentials of PC method in Robust Design Optimization (RDO) and Reliability-Based Design Optimization (RBDO) of ship hydrodynamic performances.展开更多
文摘为解决SWAT(soil and water assessment tool)模型在复杂情形下的参数不确定性分析问题,引入参数不确定性分析平台UQ-PyL(Uncertainty Quantification Python Laboratory),开发UQ-PyL与SWAT模型的耦合模块,使得UQ-PyL中的各种算法能够方便快捷地应用于SWAT模型的参数不确定性分析。为验证UQ-PyL用于SWAT模型参数不确定性分析的效果,在我国不同气候条件下的4个流域构建SWAT模型,综合对比评估UQ-PyL与SWAT-CUP对模型参数的不确定性分析结果。结果表明:UQ-PyL多种敏感性分析方法筛选出的敏感参数比SWAT-CUP单一方法筛选的结果更加合理;使用UQ-PyL率定的参数在4个流域应用中都表现良好,优化后模拟结果的纳什效率系数均在0.55以上,收敛次数在550次以内;在4个流域的模拟中,UQ-PyL能提供计算效率更高的算法ASMO,也能提供模拟结果更准确的算法SCE。综上,与SWAT模型相耦合的UQ-PyL能够支持SWAT模型用户在不同系统下对模型参数进行更高效的不确定性分析研究。
文摘应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强度因子的框架下,引入随机参数进行蒙特卡罗模拟(Monte Carlo simulation, MCS),并提出一种新颖的基于MCS的不确定量化分析。与直接的MCS不同,采用奇异值分解构造低阶的子空间,降低系统的自由度,并使用径向基函数对子空间进行近似,通过子空间的线性组合获得新的结构响应,实现基于MCS的快速不确定量化分析。考虑不同荷载状况下,结构形状参数和材料属性参数对应力强度因子的影响,使用改进的MCS计算应力强度因子的统计特征,量化不确定参数对结构的影响。最后通过若干算例验证了该算法的准确性和有效性。
基金supported by the Advanced Research of National Defense Foundation of China(426010501)
文摘As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method.
文摘In this paper, two modified QUICK schemes, namely Q-QUICK and UQ-QUICK, for improving the preci-sion of convective flux approximation are verified in advection-diffusion equation of pollutants on unstruc-tured grids. The constructed auxiliary nodes for Q-QUICK/UQ-QUICK are composed of two neighboring nodes plus the next upwind node, the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces. 2D unsteady advection-diffusion equation of pollut-ants is conducted for their verifications on unstructured grids. The numerical results show that Q-QUICK and UQ-QUICK have similar computational accuracy to the central difference scheme and similar numerical stability to upwind difference scheme after applying the deferred correction method. In addition, their corre-sponding CPU times are approximately equivalent to those of traditional difference schemes and their abili-ties for adapting high grid deformation are robust.
基金Project supported by the National Natural Science Foundation of China(Grant No.50979060)
文摘A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) and Standard Deviation (SD) are evaluated by solving the PC coefficients from a linear system of algebraic equations. The one-dimensional PC with the Legendre polynomials is applied to: (1) stochastic input domain and (2) Cumulative Distribution Function (CDF) image domain, allowing for more flexibility. The PC method is validated with the Monte-Carlo benchmark results in several high-fidelity, CFD-based, ship UQ problems, evaluating the geometrical, operational and environmental uncertainties for the Delft Catamaran 372. Convergence is studied versus PC order P for both EV and SD, showing that high order PC is not necessary for present applications. Comparison is carried out for PC with/without the least square minimization when solving the PC coefficients. The least square minimization, using larger number of CFD samples, is recommended for current test cases. The study shows the potentials of PC method in Robust Design Optimization (RDO) and Reliability-Based Design Optimization (RBDO) of ship hydrodynamic performances.