The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a...The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.展开更多
The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid...The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows.展开更多
A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45...A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters.展开更多
An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.T...An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case.展开更多
The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy pr...The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy precipitation.This paper proposed a method for objectively classifying and segmenting MCSs using geosynchronous satellite observations.Validation of the product relative to the classification in radar composite reflectivity imagery indicates that the algorithm offers skill for discriminating between convective and stratiform areas and matched 65%of convective area identifications in radar imagery with a false alarm rate of 39%and an accuracy of 94%.A quantitative evaluation of the similarity between the structures of 50 MCSs randomly obtained from satellite and radar observations shows that the similarity was as high as 60%.For further testing,the organizational modes of the MCS that caused the heavy precipitation in Northwest China on August 21,2016(hereinafter known as the“0821”rainstorm)were identified.It was found that the MCS,accompanied by the“0821”rainstorm,successively exhibited modes of the isolated cell,squall line with parallel stratiform(PS)rain,and non-linear system during its life cycle.Among them,the PS mode might have played a key role in causing this flooding.These findings are in line with previous studies.展开更多
The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced ...The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced in the drying chamber. Then at steady time intervals, the sample is withdrawn from the drying chamber, for a rapid weighing. After each weighing, the sample is reintroduced in the dryer. At each time interval, the ambient temperature of the drying chamber and its relative humidity γ are measured by a thermo-hygrometer. From the experimental data, a theoretical determination of the moisture evaporated from the product was performed and a good agreement was found between the theoretical and experimental values, confirmed by the value of the RMSE. Those calculations used the constants in the Nusselt number found in literature. Then those constants were evaluated again, to get new values more suitable with the experimental data. The dimensionless numbers of Nusselt, Grashof and Prandtl were calculated. That allowed the calculation of the average value of the Nusselt number. The average convective heat transfer coefficient was determined.展开更多
In this work,a steady mixed convection in a two-dimensional enclosure filled viananoliquid Cu/H2O through a porous medium was numerically analyzed.The nanoliquid flow is designated utilizing the Brinkman-Forchheimer m...In this work,a steady mixed convection in a two-dimensional enclosure filled viananoliquid Cu/H2O through a porous medium was numerically analyzed.The nanoliquid flow is designated utilizing the Brinkman-Forchheimer model.The upper and the bottom horizontal walls are considered to be hot(Th)and cold temperature(Tc),respectively,whereas the other walls are thermally insulated.The impact of various dimensionless terms such as the Grashof number(Gr)in the ranges(0.01–20),the Reynolds number(Re)in the ranges(50–500),the Hartman number(Ha)in the ranges(0–20),and three different location cases(0.25,0.5,and 0.75)are carefully analyzed.The obtained outcomes are established in the form of isotherms,streamlines,and the average Nusselt number.It has been found that heat transport increases significantly through rising Reynolds number(Re).For the location cases L=0.25,Re=50,and Gr=105,the heat transfer is maximum.展开更多
Heat transfer improves significantly when the working fluid has high thermal conductivity.Heat transfer can be found in fields such as food processing,solar through collectors,and drug delivery.Considering this notabl...Heat transfer improves significantly when the working fluid has high thermal conductivity.Heat transfer can be found in fields such as food processing,solar through collectors,and drug delivery.Considering this notable fact,this work is focused on investigating the bio-convection-enhanced heat transfer in the existence of convective boundary conditions in the flow of hybrid nanofluid across a stretching surface.Buongiorno fluid model with hybrid nanoparticles has been employed along the swimming microorganisms to investigate the mixture base working fluid.The developed nonlinear flow governing equations have been tackled numerically with the help of the bvp4c.The effects of relevant parameters on the flowdynamic have been portrayed in a graphical representation.The velocity profile decreases by raising the levels of buoyancy ratio and mixed convection in the range of 0.1<λ≤0.3.It has been discovered thatwhen bioconvection levels rise,motile microbemigration abruptly slows,which results in a decrease in fluid acceleration.The concentration of fluid flow declined for the Lewis number,but the opposite trend has been observed for the elastic parameter,thermophoresis parameter,and buoyancy ratio.With rising values of Brownian motion and thermophoretic diffusion,the surface drag and Nusselt number decrease significantly.Whereas,the opposite trend has been observed when the values of the thermal Biot number,Prandtl number and buoyancy ratio are enhanced.Additionally,data from this study have been validated by comparison with those that have previously been published,and an appropriate rate of agreement has been observed.展开更多
This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical p...This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical pore plate in the existence of medium of porous. Physical characteristics such as thermo-diffusion, injection-suction, and viscous dissipation are taken into consideration, in addition to an equally distributed magnetic force utilized as well in the completely opposite path of the flow. By means of several non-dimensional transformations, the momentum, energy, concentration, and nanoparticle volume fraction equations under investigation are converted in terms of nonlinear boundary layer equations and computationally resolved by utilizing the sixth-order Runge-Kutta strategy in combination together with the iteration of Nachtsheim-Swigert shooting procedure. By contrasting the findings produced for a few particular examples with those found in the published literature, the correctness of the numerical result is verified, and a rather good agreement is found. Utilizing various ranges of pertinent factors, computing findings are determined not only regarding velocity, temperature, and concentration as well as nanoparticle fraction of volume but also concerning with local skin-friction coefficient, local Nusselt and general Sherwood numbers associated with nanoparticle Sherwood number. The findings of the study demonstrate that increasing the fluid suction parameter decreases the velocity and temperature of the flow field in conjunction with concentration and has a variable impact on the nanoparticle fraction of volume, despite an increasing behavior in the local skin friction coefficient and local Nusselt as well as general Sherwood numbers and an increasing behavior in the local nanoparticle Sherwood number. Furthermore, enhancing a Schmidt number leads to a reduction in the local nanoparticle Sherwood number and a rise in the nanoparticle proportion of volume. Along with concentration, it also reduces temperature and velocity. However, it also raises the local Sherwood and Nusselt numbers and reduces the local skin friction coefficient.展开更多
A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids.Since there are significant gaps in the illumination of existing methods for enhancing heat transmis...A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids.Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials,a thorough investigation of the previously outlined models is essential.The goal of the ongoing study is to determine whether the microscopic gold particles that are involved in mass and heat transmission drift in freely.The current study examines heat and mass transfer on 3D MHD Darcy–Forchheimer flow of Casson nanofluid-induced bio-convection past a stretched sheet.The inclusion of the nanoparticles is a result of their peculiar properties,such as remarkable thermal conductivity,which are important in heat exchangers and cutting-edge nanotechnology.The gyrotactic microorganisms must be included to prevent the potential deposition of minute particles.The proposed flow dynamics model consists of an evolving nonlinear system of PDEs,which is subsequently reduced to a system of dimensionless ODEs utilizing similarity approximations.MATLAB software was utilized to create an effective code for the Runge-Kutta technique using a shooting tool to acquire numerical results.This method is extensively used to solve these issues since it is accurate to fourth order,efficient,and affordable.The influence of submerged factors on the velocity,temperature,concentration,and density of motile microorganisms is shown in the figures.Additionally,tables and bar charts are used to illustrate the physical characteristics of the Nusselt and Sherwood numbers for the densities of both nanoparticles and motile microorganisms.The dimensionless velocities are observed declining when the casson,magnetic,porosity,and forchheimer parameters grow,whereas the dimensionless temperature and concentration rise as the thermophoresis parameter rises.This work provides insights into practical applications such nanofluidic,energy conservation,friction reduction,and power generation.Furthermore,in a concentration field,the Brownian and thermophoresis parameters exhibit very distinct behaviours.However,the work makes a significant point that the flow of a Casson fluid including nanoparticles can be regulated by appropriately modifying the Casson parameter,thermophoresis parameter,and Brownian motion parameter.展开更多
The stability of the static mode of compressible gas convection is analyzed in the linear approximation with heating from below. The obtained data are compared with the results of solving the system of complete nonlin...The stability of the static mode of compressible gas convection is analyzed in the linear approximation with heating from below. The obtained data are compared with the results of solving the system of complete nonlinear equations describing convective flows of compressible gas. The features of the constructed neutral curve are discussed.展开更多
Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boun...Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.展开更多
A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was ...A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer.展开更多
Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage ana...Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage analysis apparatus and the convective combustion characteristic of MPP was measured by a large volume closed bomb, respectively. Rasults Statistical physical model of burning in the micropore and granular burning were developed. The burning rate equation of steady-state convective combustion of MPP was obtained. Conclusions This model correlates the convective burning rate with micropores para- meters for the first time,and the calculating values of convective burning rate are in agreement with test results.The model also can be used to estimate the effects of microporous parame- ters, basic mass burning rate, MPP density and pressure in combustion chamber on the convective combustion characteristics of MPP.展开更多
[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with soundi...[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.展开更多
The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the...The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV.展开更多
Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflecti...Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.展开更多
The grid-point atmospheric model of IAP LASG (GAMIL) was developed in and has been evaluated since early 2004. Although the model shows its ability in simulating the global climate, it suffers from some problems in ...The grid-point atmospheric model of IAP LASG (GAMIL) was developed in and has been evaluated since early 2004. Although the model shows its ability in simulating the global climate, it suffers from some problems in simulating precipitation in the tropics. These biases seem to result mainly from the treatment of the subgrid scale convection, which is parameterized with Tiedtke's massflux scheme (or the Zhang-McFarlane scheme, as an option) in the model. In order to reduce the systematic biases, several modifications were made to the Tiedtke scheme used in GAMIL, including (1) an increase in lateral convective entrainment/detrainment rate for shallow convection, (2) inclusion of a relative humidity threshold for the triggering of deep convection, and (3) a reduced efficiency for the conversion of cloud water to rainwater in the convection scheme. Two experiments, one with the original Tiedtke scheme used in GAMIL and the other with the modified scheme, were conducted to evaluate the performance of the modified scheme in this study. The results show that both the climatological mean state, such as precipitation, temperature and specific humidity, and interannual variability in the model simulation are improved with the use of this modified scheme. Results from several additional experiments show that the improvements in the model performance in different regions mainly result from either the introduction of the relative humidity threshold for triggering of the deep convection or the suppressed shallow convection due to enhanced lateral convective entrainment/detrainment rates.展开更多
Diurnal variations in amount, frequency and intensity of warm-season hourly precipitation(HP) at seven levels, which are defined as HP 0.1, 0.5, 1, 5, 10, 20 and 50 mm, are revealed based on no less than 30 years of h...Diurnal variations in amount, frequency and intensity of warm-season hourly precipitation(HP) at seven levels, which are defined as HP 0.1, 0.5, 1, 5, 10, 20 and 50 mm, are revealed based on no less than 30 years of hourly rain-gauge observations at national stations over central and eastern China(CEC). This study investigates the variations, relationships, differences and similarities of total, stratiform, convective and extreme HP over the entire CEC and various subregions. Results indicate that the variations in the amount and frequency of HP at the seven levels over the entire CEC all display a bimodal feature. For various regions, the variations of total HP mostly feature two peaks, while convective HP mainly occurs in the late afternoon and determines the diurnal variation of total HP intensity. On the basis of the primary peak time periods of HP frequency at all levels over different subregions, the variations can be classified into three main categories: late-afternoon primary peak, nocturnal primary peak, and time-shifting primary peak. However, the variations over some coastal regions like the Liaodong Peninsula, the Shandong Peninsula, and the coastal regions of Guangdong, distinctly differ from those over their corresponding larger regions. Overall, the normalized diurnal variation amplitude of amount and frequency increases with the increasing HP intensity; convective precipitation can be represented by HP 10 mm; and the intensity of HP 50 mm is slightly larger during the nighttime than during the daytime over the entire CEC. In northern China, diurnal variation in HP 5 mm can represent well that in convective precipitation.展开更多
In this paper, the interannual variability of the convective activities associated with the East Asian summer monsoon and its association with the thermal distribution of SST anomalies in the tropical Pacific are anal...In this paper, the interannual variability of the convective activities associated with the East Asian summer monsoon and its association with the thermal distribution of SST anomalies in the tropical Pacific are analyzed by using the daily TBB (Temperature of Black Body at Cloud Top) dataset from 1980 to 1991. The results of composite and individual analyses of TBB anomalies show that the interannual variability of the convective activities associated with the summer monsoon in East Asia is large and has a close relation to the thermal distribution of SST anomalies in the tropical Pacific, especially in the western Pacific warm pool. In the summer with ENSO-like distribution of SST anomalies in the tropical Pacific, the convective activities are weak around the Philippines, then the convective activities are intensified and the summer monsoon rainfall is strong in the area from the Yangtze River basin and the Huaihe River basin in China to Republic of Korea and Japan. On the contrary, in the summer with anti-ENSO-like distribution of SST anomalies in the tropical Pacific, the convective activities are strong around the Philippines, then the convective activities are weakened and the summer monsoon rainfall is weak in the area from the Yangtze River basin and the Huaihe River basin to Republic of Korea and Japan. It may be also found either from the composite analysis or from the individual analysis of TBB anomalies that the convective activities associated with the summer monsoon in East Asia have a good negative relation to that around the Philippines and a positive relation to that over the equatorial central Pacific.展开更多
基金Project supported by the DST-FIST Program for Higher Education Institutions of India(No. SR/FST/MS-I/2018/23(C))。
文摘The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.
文摘The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows.
基金primarily supported by the Ministry of Science and Technology of the People's Republic of China (MOST)(Grant No. 2018YFC1507303)National Natural Science Foundation of China (Grant Nos. 419505044,41941007, and 42230607)+1 种基金by the Talent Research Start-Up Fund of Nanjing University of Aeronautics and Astronautics(Grant No. 1007-90YAH22046)supported by The High Performance Computing Platform of Nanjing University of Aeronautics and Astronautics。
文摘A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters.
基金supported by the National Natural Science Foundation of China (Grant Nos.41730965, U2242204, and 41175047)the National Key Basic Research and Development Project of China (Grant No.2013CB430104)+2 种基金the Key Project of the Joint Funds of the Natural Science Foundation of Zhejiang Province (Grant No.LZJMZ23D050003financial support from the China Scholarship Council for her visit to CAPSUniversity of Oklahoma
文摘An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case.
基金National Natural Science Foundation of China(41965001)。
文摘The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy precipitation.This paper proposed a method for objectively classifying and segmenting MCSs using geosynchronous satellite observations.Validation of the product relative to the classification in radar composite reflectivity imagery indicates that the algorithm offers skill for discriminating between convective and stratiform areas and matched 65%of convective area identifications in radar imagery with a false alarm rate of 39%and an accuracy of 94%.A quantitative evaluation of the similarity between the structures of 50 MCSs randomly obtained from satellite and radar observations shows that the similarity was as high as 60%.For further testing,the organizational modes of the MCS that caused the heavy precipitation in Northwest China on August 21,2016(hereinafter known as the“0821”rainstorm)were identified.It was found that the MCS,accompanied by the“0821”rainstorm,successively exhibited modes of the isolated cell,squall line with parallel stratiform(PS)rain,and non-linear system during its life cycle.Among them,the PS mode might have played a key role in causing this flooding.These findings are in line with previous studies.
文摘The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced in the drying chamber. Then at steady time intervals, the sample is withdrawn from the drying chamber, for a rapid weighing. After each weighing, the sample is reintroduced in the dryer. At each time interval, the ambient temperature of the drying chamber and its relative humidity γ are measured by a thermo-hygrometer. From the experimental data, a theoretical determination of the moisture evaporated from the product was performed and a good agreement was found between the theoretical and experimental values, confirmed by the value of the RMSE. Those calculations used the constants in the Nusselt number found in literature. Then those constants were evaluated again, to get new values more suitable with the experimental data. The dimensionless numbers of Nusselt, Grashof and Prandtl were calculated. That allowed the calculation of the average value of the Nusselt number. The average convective heat transfer coefficient was determined.
文摘In this work,a steady mixed convection in a two-dimensional enclosure filled viananoliquid Cu/H2O through a porous medium was numerically analyzed.The nanoliquid flow is designated utilizing the Brinkman-Forchheimer model.The upper and the bottom horizontal walls are considered to be hot(Th)and cold temperature(Tc),respectively,whereas the other walls are thermally insulated.The impact of various dimensionless terms such as the Grashof number(Gr)in the ranges(0.01–20),the Reynolds number(Re)in the ranges(50–500),the Hartman number(Ha)in the ranges(0–20),and three different location cases(0.25,0.5,and 0.75)are carefully analyzed.The obtained outcomes are established in the form of isotherms,streamlines,and the average Nusselt number.It has been found that heat transport increases significantly through rising Reynolds number(Re).For the location cases L=0.25,Re=50,and Gr=105,the heat transfer is maximum.
文摘Heat transfer improves significantly when the working fluid has high thermal conductivity.Heat transfer can be found in fields such as food processing,solar through collectors,and drug delivery.Considering this notable fact,this work is focused on investigating the bio-convection-enhanced heat transfer in the existence of convective boundary conditions in the flow of hybrid nanofluid across a stretching surface.Buongiorno fluid model with hybrid nanoparticles has been employed along the swimming microorganisms to investigate the mixture base working fluid.The developed nonlinear flow governing equations have been tackled numerically with the help of the bvp4c.The effects of relevant parameters on the flowdynamic have been portrayed in a graphical representation.The velocity profile decreases by raising the levels of buoyancy ratio and mixed convection in the range of 0.1<λ≤0.3.It has been discovered thatwhen bioconvection levels rise,motile microbemigration abruptly slows,which results in a decrease in fluid acceleration.The concentration of fluid flow declined for the Lewis number,but the opposite trend has been observed for the elastic parameter,thermophoresis parameter,and buoyancy ratio.With rising values of Brownian motion and thermophoretic diffusion,the surface drag and Nusselt number decrease significantly.Whereas,the opposite trend has been observed when the values of the thermal Biot number,Prandtl number and buoyancy ratio are enhanced.Additionally,data from this study have been validated by comparison with those that have previously been published,and an appropriate rate of agreement has been observed.
文摘This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical pore plate in the existence of medium of porous. Physical characteristics such as thermo-diffusion, injection-suction, and viscous dissipation are taken into consideration, in addition to an equally distributed magnetic force utilized as well in the completely opposite path of the flow. By means of several non-dimensional transformations, the momentum, energy, concentration, and nanoparticle volume fraction equations under investigation are converted in terms of nonlinear boundary layer equations and computationally resolved by utilizing the sixth-order Runge-Kutta strategy in combination together with the iteration of Nachtsheim-Swigert shooting procedure. By contrasting the findings produced for a few particular examples with those found in the published literature, the correctness of the numerical result is verified, and a rather good agreement is found. Utilizing various ranges of pertinent factors, computing findings are determined not only regarding velocity, temperature, and concentration as well as nanoparticle fraction of volume but also concerning with local skin-friction coefficient, local Nusselt and general Sherwood numbers associated with nanoparticle Sherwood number. The findings of the study demonstrate that increasing the fluid suction parameter decreases the velocity and temperature of the flow field in conjunction with concentration and has a variable impact on the nanoparticle fraction of volume, despite an increasing behavior in the local skin friction coefficient and local Nusselt as well as general Sherwood numbers and an increasing behavior in the local nanoparticle Sherwood number. Furthermore, enhancing a Schmidt number leads to a reduction in the local nanoparticle Sherwood number and a rise in the nanoparticle proportion of volume. Along with concentration, it also reduces temperature and velocity. However, it also raises the local Sherwood and Nusselt numbers and reduces the local skin friction coefficient.
文摘A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids.Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials,a thorough investigation of the previously outlined models is essential.The goal of the ongoing study is to determine whether the microscopic gold particles that are involved in mass and heat transmission drift in freely.The current study examines heat and mass transfer on 3D MHD Darcy–Forchheimer flow of Casson nanofluid-induced bio-convection past a stretched sheet.The inclusion of the nanoparticles is a result of their peculiar properties,such as remarkable thermal conductivity,which are important in heat exchangers and cutting-edge nanotechnology.The gyrotactic microorganisms must be included to prevent the potential deposition of minute particles.The proposed flow dynamics model consists of an evolving nonlinear system of PDEs,which is subsequently reduced to a system of dimensionless ODEs utilizing similarity approximations.MATLAB software was utilized to create an effective code for the Runge-Kutta technique using a shooting tool to acquire numerical results.This method is extensively used to solve these issues since it is accurate to fourth order,efficient,and affordable.The influence of submerged factors on the velocity,temperature,concentration,and density of motile microorganisms is shown in the figures.Additionally,tables and bar charts are used to illustrate the physical characteristics of the Nusselt and Sherwood numbers for the densities of both nanoparticles and motile microorganisms.The dimensionless velocities are observed declining when the casson,magnetic,porosity,and forchheimer parameters grow,whereas the dimensionless temperature and concentration rise as the thermophoresis parameter rises.This work provides insights into practical applications such nanofluidic,energy conservation,friction reduction,and power generation.Furthermore,in a concentration field,the Brownian and thermophoresis parameters exhibit very distinct behaviours.However,the work makes a significant point that the flow of a Casson fluid including nanoparticles can be regulated by appropriately modifying the Casson parameter,thermophoresis parameter,and Brownian motion parameter.
文摘The stability of the static mode of compressible gas convection is analyzed in the linear approximation with heating from below. The obtained data are compared with the results of solving the system of complete nonlinear equations describing convective flows of compressible gas. The features of the constructed neutral curve are discussed.
文摘Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.
基金Project(51146010)supported by the National Natural Science Foundation of ChinaProject(S2011040003189)supported by the Doctoral Research Fund of Guangdong Natural Science Foundation,ChinaProject supported by the Fundation of Key Laboratory of Surface Functional Structure Manufacturing of Guangdong Higher Education Institutes,South China University of Technology
文摘A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer.
文摘Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage analysis apparatus and the convective combustion characteristic of MPP was measured by a large volume closed bomb, respectively. Rasults Statistical physical model of burning in the micropore and granular burning were developed. The burning rate equation of steady-state convective combustion of MPP was obtained. Conclusions This model correlates the convective burning rate with micropores para- meters for the first time,and the calculating values of convective burning rate are in agreement with test results.The model also can be used to estimate the effects of microporous parame- ters, basic mass burning rate, MPP density and pressure in combustion chamber on the convective combustion characteristics of MPP.
基金Supported by Science and Technology Development Project of Shandong Science and Technology Hall(2010GSF10805)National Natural Science Foundation of China(41140036)~~
文摘[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.
基金supported by the project of State Key Labo-ratory of Severe Weather, Chinese Academy of Meteoro-logical Sciences (No. 2009LASW-A03) the National Natural Science Foundation of China under Grants Nos.40875021 and 40930951
文摘The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV.
基金supported by the National Natural Science Foundation of China (Grant No.41375051 and 41505038)
文摘Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.
基金This work is jointly supported by CAS International Partnership Creative Group "The Climate System Model Development and Application Studies", the 973 Project (Grant No. 2005CB321703) the Fund for Innovative Research Groups (Grant No. 40221503) the National Natural Science Foundation of China (Grant No. 40233031).
文摘The grid-point atmospheric model of IAP LASG (GAMIL) was developed in and has been evaluated since early 2004. Although the model shows its ability in simulating the global climate, it suffers from some problems in simulating precipitation in the tropics. These biases seem to result mainly from the treatment of the subgrid scale convection, which is parameterized with Tiedtke's massflux scheme (or the Zhang-McFarlane scheme, as an option) in the model. In order to reduce the systematic biases, several modifications were made to the Tiedtke scheme used in GAMIL, including (1) an increase in lateral convective entrainment/detrainment rate for shallow convection, (2) inclusion of a relative humidity threshold for the triggering of deep convection, and (3) a reduced efficiency for the conversion of cloud water to rainwater in the convection scheme. Two experiments, one with the original Tiedtke scheme used in GAMIL and the other with the modified scheme, were conducted to evaluate the performance of the modified scheme in this study. The results show that both the climatological mean state, such as precipitation, temperature and specific humidity, and interannual variability in the model simulation are improved with the use of this modified scheme. Results from several additional experiments show that the improvements in the model performance in different regions mainly result from either the introduction of the relative humidity threshold for triggering of the deep convection or the suppressed shallow convection due to enhanced lateral convective entrainment/detrainment rates.
基金supported by the National Natural Science Foundation of China (Grant Nos.91637211 and 41375051)the National Key Research and Development Program of China (Grant No.2017YFC1502003)
文摘Diurnal variations in amount, frequency and intensity of warm-season hourly precipitation(HP) at seven levels, which are defined as HP 0.1, 0.5, 1, 5, 10, 20 and 50 mm, are revealed based on no less than 30 years of hourly rain-gauge observations at national stations over central and eastern China(CEC). This study investigates the variations, relationships, differences and similarities of total, stratiform, convective and extreme HP over the entire CEC and various subregions. Results indicate that the variations in the amount and frequency of HP at the seven levels over the entire CEC all display a bimodal feature. For various regions, the variations of total HP mostly feature two peaks, while convective HP mainly occurs in the late afternoon and determines the diurnal variation of total HP intensity. On the basis of the primary peak time periods of HP frequency at all levels over different subregions, the variations can be classified into three main categories: late-afternoon primary peak, nocturnal primary peak, and time-shifting primary peak. However, the variations over some coastal regions like the Liaodong Peninsula, the Shandong Peninsula, and the coastal regions of Guangdong, distinctly differ from those over their corresponding larger regions. Overall, the normalized diurnal variation amplitude of amount and frequency increases with the increasing HP intensity; convective precipitation can be represented by HP 10 mm; and the intensity of HP 50 mm is slightly larger during the nighttime than during the daytime over the entire CEC. In northern China, diurnal variation in HP 5 mm can represent well that in convective precipitation.
文摘In this paper, the interannual variability of the convective activities associated with the East Asian summer monsoon and its association with the thermal distribution of SST anomalies in the tropical Pacific are analyzed by using the daily TBB (Temperature of Black Body at Cloud Top) dataset from 1980 to 1991. The results of composite and individual analyses of TBB anomalies show that the interannual variability of the convective activities associated with the summer monsoon in East Asia is large and has a close relation to the thermal distribution of SST anomalies in the tropical Pacific, especially in the western Pacific warm pool. In the summer with ENSO-like distribution of SST anomalies in the tropical Pacific, the convective activities are weak around the Philippines, then the convective activities are intensified and the summer monsoon rainfall is strong in the area from the Yangtze River basin and the Huaihe River basin in China to Republic of Korea and Japan. On the contrary, in the summer with anti-ENSO-like distribution of SST anomalies in the tropical Pacific, the convective activities are strong around the Philippines, then the convective activities are weakened and the summer monsoon rainfall is weak in the area from the Yangtze River basin and the Huaihe River basin to Republic of Korea and Japan. It may be also found either from the composite analysis or from the individual analysis of TBB anomalies that the convective activities associated with the summer monsoon in East Asia have a good negative relation to that around the Philippines and a positive relation to that over the equatorial central Pacific.