Comparative research on different countries’ structural design codes holds great importance and can gain valuable insights: Awareness of Design Levels, Identifying Code Deficiencies and Optimizing Designs. The crack ...Comparative research on different countries’ structural design codes holds great importance and can gain valuable insights: Awareness of Design Levels, Identifying Code Deficiencies and Optimizing Designs. The crack width of concrete structure is an important design aspect of the civil design. The four highly recognized and widely used crack width theories are systematically summarized. Based on the mentioned theories and project practices, American code ACI system, Eurocode 2 1992-1 and Chinese code GB 50010 have different crack width control requirement and calculation methods. The crack width control method based on ACI system code has evolved from the Z-factor method to the steel bar spacing control method which is simple and easy to be adopted for engineering. Meanwhile, the ACI 224.1R also gives a direct crack width calculation method consistent with the steel bar spacing control method. The Eurocode 2 and GB 50010 based on the bond-slip & no-slip theory consider much more affecting factors than ACI for predicting crack width. Taking the crack width calculation of Tunnel 5 intake as an example, the crack widths of the structure are calculated according to ACI system code, Eurocode 2 and GB 50010 respectively, the results show that the crack width results in various codes are not much different. The EN 1992-1 and GB 50010 results are almost the same which are less than the ACI 224.1Rresults.展开更多
文摘Comparative research on different countries’ structural design codes holds great importance and can gain valuable insights: Awareness of Design Levels, Identifying Code Deficiencies and Optimizing Designs. The crack width of concrete structure is an important design aspect of the civil design. The four highly recognized and widely used crack width theories are systematically summarized. Based on the mentioned theories and project practices, American code ACI system, Eurocode 2 1992-1 and Chinese code GB 50010 have different crack width control requirement and calculation methods. The crack width control method based on ACI system code has evolved from the Z-factor method to the steel bar spacing control method which is simple and easy to be adopted for engineering. Meanwhile, the ACI 224.1R also gives a direct crack width calculation method consistent with the steel bar spacing control method. The Eurocode 2 and GB 50010 based on the bond-slip & no-slip theory consider much more affecting factors than ACI for predicting crack width. Taking the crack width calculation of Tunnel 5 intake as an example, the crack widths of the structure are calculated according to ACI system code, Eurocode 2 and GB 50010 respectively, the results show that the crack width results in various codes are not much different. The EN 1992-1 and GB 50010 results are almost the same which are less than the ACI 224.1Rresults.