Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis,...Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis, clinical evidence is limited. Objective: The purpose of this study is to provide high-quality evidence to support the effectiveness of the traditional Chinese hot and humid compress in the treatment of LDH with qi stagnation and blood stasis. Methods: From October 2021 to November 2023, 86 patients with LDH of qi stagnation and blood stasis type were recruited in our hospital and divided into a control (n = 43) and an observation group (n = 43) according to the random number table method. The control group was given routine clinical treatment, and the observation group was treated with the hot and humid compress therapy for two weeks. The visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, TCM syndrome score, serum interleukin-6 (IL-6), serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were observed and compared between the two groups before and after treatment, and the clinical efficacy of the two groups was evaluated. Results: After treatment, the VAS score, TCM symptom score, and serum IL-6, IL-1β, and TNF-α levels decreased in both groups (P P P P P Conclusions: The hot and humid compress of traditional Chinese medicine can effectively relieve pain, restore lumbar function, improve TCM syndromes, reduce the level of inflammatory factors, and have a curative effect in treating LDH.展开更多
In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is o...In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.展开更多
Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid...Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material.展开更多
针对油浸式变压器2维流-热耦合仿真计算效率低的问题,提出了基于混合有限元法的并行计算方法。首先,在Visual Studio 2019中采用C++语言实现无量纲最小二乘有限元法以及迎风有限元法的串行计算方法。然后,基于图形处理器(graphic proces...针对油浸式变压器2维流-热耦合仿真计算效率低的问题,提出了基于混合有限元法的并行计算方法。首先,在Visual Studio 2019中采用C++语言实现无量纲最小二乘有限元法以及迎风有限元法的串行计算方法。然后,基于图形处理器(graphic processing unit,GPU)实现流体场的并行计算,针对单分区分匝模型对比分析了不同GPU卡在不同网格条件下的并行计算效率,分析结果表明数据规模越大,GPU卡流处理器越多并行效果越好。其次,基于Intel MKL(Intel math kernel library)函数库结合共享存储并行编程(open multi-processing,OpenMP)实现了2维温度场的并行计算,并对比分析了不同网格数量对并行效率的影响。最后,在此基础上提出了根据不同仿真条件的混合并行计算方法,并应用到大型油浸式变压器绕组模型的2维温升热点分析中。结果表明,相较于串行程序,混合有限元并行计算方法的加速比达到了69.5,实验测试结果进一步验证了并行计算结果的准确性,研究成果为大型油浸式变压器流-热耦合问题的快速计算奠定了基础。展开更多
传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性–个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分...传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性–个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分利用深度置信网络(Deep belief network,DBN)的深度分层特征提取能力,通过度量多模态数据间分布的相似性和差异性,进一步得到能够反映多模态过程共有信息的共性特征以及反映每个模态独有信息的个性特征;其次,基于CS-DBN,利用多模态过程的已知故障等级数据生成多模态共性–个性特征集,通过加权逻辑回归构建故障等级评估模型;最后,将所提方法应用于带钢热连轧生产过程的故障等级评估中.应用结果表明,随着多模态故障等级数据的增加,所提方法的评估准确率逐渐增加,当故障信息充足时,评估准确率可达98.75%;故障信息不足时,与传统方法相比,评估准确率提升近10%.展开更多
文摘Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis, clinical evidence is limited. Objective: The purpose of this study is to provide high-quality evidence to support the effectiveness of the traditional Chinese hot and humid compress in the treatment of LDH with qi stagnation and blood stasis. Methods: From October 2021 to November 2023, 86 patients with LDH of qi stagnation and blood stasis type were recruited in our hospital and divided into a control (n = 43) and an observation group (n = 43) according to the random number table method. The control group was given routine clinical treatment, and the observation group was treated with the hot and humid compress therapy for two weeks. The visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, TCM syndrome score, serum interleukin-6 (IL-6), serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were observed and compared between the two groups before and after treatment, and the clinical efficacy of the two groups was evaluated. Results: After treatment, the VAS score, TCM symptom score, and serum IL-6, IL-1β, and TNF-α levels decreased in both groups (P P P P P Conclusions: The hot and humid compress of traditional Chinese medicine can effectively relieve pain, restore lumbar function, improve TCM syndromes, reduce the level of inflammatory factors, and have a curative effect in treating LDH.
文摘In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.
文摘Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material.
文摘针对油浸式变压器2维流-热耦合仿真计算效率低的问题,提出了基于混合有限元法的并行计算方法。首先,在Visual Studio 2019中采用C++语言实现无量纲最小二乘有限元法以及迎风有限元法的串行计算方法。然后,基于图形处理器(graphic processing unit,GPU)实现流体场的并行计算,针对单分区分匝模型对比分析了不同GPU卡在不同网格条件下的并行计算效率,分析结果表明数据规模越大,GPU卡流处理器越多并行效果越好。其次,基于Intel MKL(Intel math kernel library)函数库结合共享存储并行编程(open multi-processing,OpenMP)实现了2维温度场的并行计算,并对比分析了不同网格数量对并行效率的影响。最后,在此基础上提出了根据不同仿真条件的混合并行计算方法,并应用到大型油浸式变压器绕组模型的2维温升热点分析中。结果表明,相较于串行程序,混合有限元并行计算方法的加速比达到了69.5,实验测试结果进一步验证了并行计算结果的准确性,研究成果为大型油浸式变压器流-热耦合问题的快速计算奠定了基础。
文摘传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性–个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分利用深度置信网络(Deep belief network,DBN)的深度分层特征提取能力,通过度量多模态数据间分布的相似性和差异性,进一步得到能够反映多模态过程共有信息的共性特征以及反映每个模态独有信息的个性特征;其次,基于CS-DBN,利用多模态过程的已知故障等级数据生成多模态共性–个性特征集,通过加权逻辑回归构建故障等级评估模型;最后,将所提方法应用于带钢热连轧生产过程的故障等级评估中.应用结果表明,随着多模态故障等级数据的增加,所提方法的评估准确率逐渐增加,当故障信息充足时,评估准确率可达98.75%;故障信息不足时,与传统方法相比,评估准确率提升近10%.