RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological func...RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological functions. There are several identified methylation modifications in eukaryotic messenger RNA (mRNA), such as NT-methylguanosine (mVG) at the cap, Nr-methyl-2'-O-methyladenosine (m6Am), 2'-O-methylation (Nm) within the cap and the internal positions, and internal N6-methyladenosine (m6A) and 5-methylcytosine (mSC). Among them, mTG cap was studied more clearly and found to have vital roles in several important mRNA processes like mRNA translation, stability and nuclear export, m6A as the most abundant modification in mRNA was found in the 1970s and has been proposed to function in mRNA splicing, translation, stability, transport and so on. mrA has been discovered as the first RNA reversible modification which is demethylated directly by human fat mass and obesity associated protein (FRO) and its homolog protein, alkylation repair ho- molog 5 (ALKBH5). b-TO has a special demethylation mechanism that demethylases m6A to A through two over-oxidative intermediate states: N6-hydroxymethyladenosine (hm6A) and Nr-formyladenosine (frA). The two newly discovered m6A demethylases, bTO and ALKBH5, significantly control energy homeostasis and spermatogenesis, respectively, indicating that the dynamic and reversible mrA, analogous to DNA and histone modifications, plays broad roles in biological kingdoms and brings us an emerging field "RNA Epige- netics". 5-methylcytosine (5mC) as an epigenetic mark in DNA has been studied widely, but mSC in mRNA is seldom explored. The bisulfide sequencing showed mSC is another abundant modification in mRNA, suggesting that it might be another RNA epigenetic mark. This review focuses on the main methylation modifications in mRNA to describe their formation, distribution, function and demethylation from the current knowledge and to provide future 19erspectives on functional studies.展开更多
基金supported by the grant from the National Natural Science Foundation of China (No. 21210003)
文摘RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological functions. There are several identified methylation modifications in eukaryotic messenger RNA (mRNA), such as NT-methylguanosine (mVG) at the cap, Nr-methyl-2'-O-methyladenosine (m6Am), 2'-O-methylation (Nm) within the cap and the internal positions, and internal N6-methyladenosine (m6A) and 5-methylcytosine (mSC). Among them, mTG cap was studied more clearly and found to have vital roles in several important mRNA processes like mRNA translation, stability and nuclear export, m6A as the most abundant modification in mRNA was found in the 1970s and has been proposed to function in mRNA splicing, translation, stability, transport and so on. mrA has been discovered as the first RNA reversible modification which is demethylated directly by human fat mass and obesity associated protein (FRO) and its homolog protein, alkylation repair ho- molog 5 (ALKBH5). b-TO has a special demethylation mechanism that demethylases m6A to A through two over-oxidative intermediate states: N6-hydroxymethyladenosine (hm6A) and Nr-formyladenosine (frA). The two newly discovered m6A demethylases, bTO and ALKBH5, significantly control energy homeostasis and spermatogenesis, respectively, indicating that the dynamic and reversible mrA, analogous to DNA and histone modifications, plays broad roles in biological kingdoms and brings us an emerging field "RNA Epige- netics". 5-methylcytosine (5mC) as an epigenetic mark in DNA has been studied widely, but mSC in mRNA is seldom explored. The bisulfide sequencing showed mSC is another abundant modification in mRNA, suggesting that it might be another RNA epigenetic mark. This review focuses on the main methylation modifications in mRNA to describe their formation, distribution, function and demethylation from the current knowledge and to provide future 19erspectives on functional studies.