Considering that thermodynarmic irreversibility and hydrodynamic equations can not be derived rigorously and unifiedly from the Liouville equations, the anomalous Langevin equation in the Liouville space is proposed a...Considering that thermodynarmic irreversibility and hydrodynamic equations can not be derived rigorously and unifiedly from the Liouville equations, the anomalous Langevin equation in the Liouville space is proposed as a fundamental equation of statistical physics. This equation reflects that the law of motion of particles obeying reversible, deterministic laws in dynamics becomes irreversible and stochastic in thermodynamics. From this the fundamental equations of nonequilibrium thermodynamics, the principle of entropy increase and the theorem of minimum entropy production have been derived. The hydrodynamic equations, such as the generalized Navier-Stokes equation and the mass drift-diffusion equation etc. have been derived rigorously from the kinetic kinetic equation which is reduced from the anomalous Langevin equation in Liouville space. All these are unified and self consistent. But it is difficult to prove that entropy production density σ can never be negative everywhere for all the isolated inhomogeneous systems far from equilibrium.展开更多
In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely impor...In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely important. In this article, a complex non-linear process is considered by taking into account the average points per game of each player, playing time, shooting percentage, and others. This physics-informed statistics is to construct a multiple linear regression model with physics-informed neural networks. Based on the official data provided by the American Basketball League, and combined with specific methods of R program analysis, the regression model affecting the player’s average points per game is verified, and the key factors affecting the player’s average points per game are finally elucidated. The paper provides a novel window for coaches to make meaningful in-game adjustments to team members.展开更多
A new approach to probability theory is presented with reference to statistics and statistical physics. At the outset, it is recognized that the “average man” of a population and the “average particle” of a gas ar...A new approach to probability theory is presented with reference to statistics and statistical physics. At the outset, it is recognized that the “average man” of a population and the “average particle” of a gas are only objects of thought, and not real entities which exist in nature. The concept of average (man) is generalized as a new concept of represental (man) whose epistemological status is intermediate between those of the particular (the man) and the universal (a man). This new concept has become necessary as a result of emergence of statistics as a new branch of human knowledge at the beginning of the nineteenth century. Probability is defined with reference to the represental. The concept of probability is the same in probability theory and in physics. But whereas in statistics the probabilities are estimated using random sequences, in statistical physics they are determined either by the laws of physics alone or by making use of the laws of probability also. Thus in physics we deal with probability at a more basic level than in statistics. This approach is free from most of the controversies we face at present in interpreting probability theory and quantum mechanics.展开更多
Understanding axon guidance is important for developing therapies to restore neuronal connections damaged by injury or disease. Axons migrate in response to extraceUular guidance molecules that induce or inhibit axon ...Understanding axon guidance is important for developing therapies to restore neuronal connections damaged by injury or disease. Axons migrate in response to extraceUular guidance molecules that induce or inhibit axon outgrowth activity within the axon. The direction of guidance is determined by the attractive and repulsive responses that the axon has to the guidance cues. In a deterministic model of guidance, the direction of guidance can be precisely determined if the attractive and repulsive effect that each cue has on the axon is known. But what if there are numerous attractive and repulsive responses induced by multiple guidance cues, and the direction of the attractive and repulsive events fluctuates? If the effect that each attractive and repulsive event has on guidance becomes too complex to measure then understand- ing how each molecular cue influences the guidance decision becomes impossible.展开更多
Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to non-equilibrium phenomena domain, however the status of the theory of non-...Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to non-equilibrium phenomena domain, however the status of the theory of non-equilibrium phenomena can not be said as firm as well established as the Gibbsian ensemble theory. In this work, we present a framework for the non-equilibrium statistical ensemble formalism based on a subdynamic kinetic equation (SKE) rooted from the Brussels-Austin school and followed by some up-to-date works. The constructed key is to use a similarity transformation between Gibbsian ensembles formalism based on Liouville equation and the subdynamic ensemble formalism based on the SKE. Using this formalism, we study the spin-Boson system, as cases of weak coupling or strongly coupling, and obtain the reduced density operators for the Canonical ensembles easily.展开更多
This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for stud...This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of microcrack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field.展开更多
Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle and using the quantum state density to all degrees of freedom including extra dimensio...Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle and using the quantum state density to all degrees of freedom including extra dimensions, we calculate the statistical entropy of the scalar field in the higher-dimensional static spherically symmetric black hole spacetime without any artificial cutoff. Calculation shows that the entropy is proportional to the horizon area. The coefficient of proportionality is 1/4 when the minimal length parameter is selected appropriately.展开更多
A form of statistical interaction term of one-dimensional anyons is introduced, based on which one-dimensional anyon models are theoretically realized, and the statistical transmutation between bosons (or fermions) ...A form of statistical interaction term of one-dimensional anyons is introduced, based on which one-dimensional anyon models are theoretically realized, and the statistical transmutation between bosons (or fermions) and anyons is established in quantum mechanics formalism. Two kinds of anyon models which are being studied are recovered and reexplained naturally in our formalism.展开更多
Based on a nonequilibrium statistical operator, it has been shown that the fundamental scalar field provides a natural representation of the repulsive interaction that produces scattering in the system and thus motiva...Based on a nonequilibrium statistical operator, it has been shown that the fundamental scalar field provides a natural representation of the repulsive interaction that produces scattering in the system and thus motivates law of entropy increasing.展开更多
We use the ideas of a million black holes, at the boundary of contribution to the shift from Pre-Planckian to Planckian physics, as a summed up contribution from one million primordial black holes. I.e. this is assumi...We use the ideas of a million black holes, at the boundary of contribution to the shift from Pre-Planckian to Planckian physics, as a summed up contribution from one million primordial black holes. I.e. this is assuming a quantum bounce. This is an extension of work done by the author as to explain the nature of a transition from being tiny to when becomes 1 in value. Taking this into account, this article is a way to delineate the physics, inherent in the transition from to which puts a premium upon the growth of the inflaton, due to , with but with changing from , an 10255 increase in magnitude. This increase in magnitude may be the driver of subsequent inflation. When we have a pre quantum, especially if the inequality becomes an equality, and then the transition to marks the start of quantum gravity, whereas our black hole entropy model used to obtain a non zero entropy contribution from 1 million primordial relic black holes, as referenced, comes from Dr. Sen in an October 10 Run Run Shaw lecture in Stonybrook University.展开更多
First, we calculate the minimum length for the creation of a 1045 Hz relic Gravitational wave. Next, we look Padamababhan’s inflaton physics, and work done by the author for a modified Heisenberg Uncertainty principl...First, we calculate the minimum length for the creation of a 1045 Hz relic Gravitational wave. Next, we look Padamababhan’s inflaton physics, and work done by the author for a modified Heisenberg Uncertainty principle for constraints on a minimum time step. Sciama’s work in “Black hole explosions” (1982) gives us a linkage between a decay rate for black holes, in terms of a life time, and the mass, M of the black hole, which when combined with a simple exposition from Susskind and Hrabovsky (2013) for the most basic evolution the time change in energy E(t), which is how we form a first order treatment of the square of a minimum time step . We then reference what was done by Ng (2008) as far as infinite quantum statistics, for entropy as a particle count, and from first principle get constraints upon entropy production, as a function of boundaries on minimum time step. We assume massive Gravity, and obtain a peak 1036 Giga Hertz frequency range (1045 Hertz) for relic Gravitational waves, and Gravitons.展开更多
The old classical problems of theoretical physics are revisited from the point of view of nonlocal physics. Nonlocal physics leads to very complicated mathematical apparatus. Here, we explain the main principles of no...The old classical problems of theoretical physics are revisited from the point of view of nonlocal physics. Nonlocal physics leads to very complicated mathematical apparatus. Here, we explain the main principles of nonlocal physics using transparent considerations and animations.展开更多
The separation of rare earth elements using diatomite M45 from aqueous solutions was studied.The experimental isotherms for the adsorption of trivalent lanthanum,cerium,and neodymium cations on this adsorbent were qua...The separation of rare earth elements using diatomite M45 from aqueous solutions was studied.The experimental isotherms for the adsorption of trivalent lanthanum,cerium,and neodymium cations on this adsorbent were quantified under strongly acidic conditions(pH 2)at 298-328 K.The adsorption equilibria of these earth elements were analyzed using two statistical physics models(homogeneous and heterogeneous monolayer models).The results show that the adsorption of these ions implies a multiionic mechanism,which is exothermic.Si-containing functional groups are responsible for the adsorption of these rare-earth elements on the diatomite surface.A heterogeneous statistical physics model confirms that two Si-based functional groups participate in the separation of these cations.The calculated adsorption capacities at saturation follow the order:neodymium>cerium>lanthanum.Calculated interaction energies range from 28600 to 40100 J/mol,indicating physical adsorption on diatomite M45.This study demonstrates that diatomite M45 is a promising separation medium that can be used for the recovery of REEs dissolved in aqueous solutions via adsorption.展开更多
文摘Considering that thermodynarmic irreversibility and hydrodynamic equations can not be derived rigorously and unifiedly from the Liouville equations, the anomalous Langevin equation in the Liouville space is proposed as a fundamental equation of statistical physics. This equation reflects that the law of motion of particles obeying reversible, deterministic laws in dynamics becomes irreversible and stochastic in thermodynamics. From this the fundamental equations of nonequilibrium thermodynamics, the principle of entropy increase and the theorem of minimum entropy production have been derived. The hydrodynamic equations, such as the generalized Navier-Stokes equation and the mass drift-diffusion equation etc. have been derived rigorously from the kinetic kinetic equation which is reduced from the anomalous Langevin equation in Liouville space. All these are unified and self consistent. But it is difficult to prove that entropy production density σ can never be negative everywhere for all the isolated inhomogeneous systems far from equilibrium.
文摘In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely important. In this article, a complex non-linear process is considered by taking into account the average points per game of each player, playing time, shooting percentage, and others. This physics-informed statistics is to construct a multiple linear regression model with physics-informed neural networks. Based on the official data provided by the American Basketball League, and combined with specific methods of R program analysis, the regression model affecting the player’s average points per game is verified, and the key factors affecting the player’s average points per game are finally elucidated. The paper provides a novel window for coaches to make meaningful in-game adjustments to team members.
文摘A new approach to probability theory is presented with reference to statistics and statistical physics. At the outset, it is recognized that the “average man” of a population and the “average particle” of a gas are only objects of thought, and not real entities which exist in nature. The concept of average (man) is generalized as a new concept of represental (man) whose epistemological status is intermediate between those of the particular (the man) and the universal (a man). This new concept has become necessary as a result of emergence of statistics as a new branch of human knowledge at the beginning of the nineteenth century. Probability is defined with reference to the represental. The concept of probability is the same in probability theory and in physics. But whereas in statistics the probabilities are estimated using random sequences, in statistical physics they are determined either by the laws of physics alone or by making use of the laws of probability also. Thus in physics we deal with probability at a more basic level than in statistics. This approach is free from most of the controversies we face at present in interpreting probability theory and quantum mechanics.
文摘Understanding axon guidance is important for developing therapies to restore neuronal connections damaged by injury or disease. Axons migrate in response to extraceUular guidance molecules that induce or inhibit axon outgrowth activity within the axon. The direction of guidance is determined by the attractive and repulsive responses that the axon has to the guidance cues. In a deterministic model of guidance, the direction of guidance can be precisely determined if the attractive and repulsive effect that each cue has on the axon is known. But what if there are numerous attractive and repulsive responses induced by multiple guidance cues, and the direction of the attractive and repulsive events fluctuates? If the effect that each attractive and repulsive event has on guidance becomes too complex to measure then understand- ing how each molecular cue influences the guidance decision becomes impossible.
基金Supported by the National Natural Science Foundation of China under Grant No. 60874087the Grants from Wuhan University of Technology,in Canada by NSERC, MITACS, CIPI, MMO, and CITO
文摘Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to non-equilibrium phenomena domain, however the status of the theory of non-equilibrium phenomena can not be said as firm as well established as the Gibbsian ensemble theory. In this work, we present a framework for the non-equilibrium statistical ensemble formalism based on a subdynamic kinetic equation (SKE) rooted from the Brussels-Austin school and followed by some up-to-date works. The constructed key is to use a similarity transformation between Gibbsian ensembles formalism based on Liouville equation and the subdynamic ensemble formalism based on the SKE. Using this formalism, we study the spin-Boson system, as cases of weak coupling or strongly coupling, and obtain the reduced density operators for the Canonical ensembles easily.
文摘This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of microcrack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field.
基金Supported by the Graduate Student Creative Foundation of Hunan University of Science and Technology under Grant No S080111, Scientific Research Foundation for the Returned Overseas Chinese Scholars from State Education Ministry of China under Grant No 527[2004]) and the Hunan Provincial Natural Science Foundation under Grant No 06JJ2026.
文摘Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle and using the quantum state density to all degrees of freedom including extra dimensions, we calculate the statistical entropy of the scalar field in the higher-dimensional static spherically symmetric black hole spacetime without any artificial cutoff. Calculation shows that the entropy is proportional to the horizon area. The coefficient of proportionality is 1/4 when the minimal length parameter is selected appropriately.
基金Supported by the National Natural Science Foundation of China under Grant No 10947138, and in part by the Research Foundation of Anhui Normal University under Grant No 2009xqn63.
文摘A form of statistical interaction term of one-dimensional anyons is introduced, based on which one-dimensional anyon models are theoretically realized, and the statistical transmutation between bosons (or fermions) and anyons is established in quantum mechanics formalism. Two kinds of anyon models which are being studied are recovered and reexplained naturally in our formalism.
文摘Based on a nonequilibrium statistical operator, it has been shown that the fundamental scalar field provides a natural representation of the repulsive interaction that produces scattering in the system and thus motivates law of entropy increasing.
文摘We use the ideas of a million black holes, at the boundary of contribution to the shift from Pre-Planckian to Planckian physics, as a summed up contribution from one million primordial black holes. I.e. this is assuming a quantum bounce. This is an extension of work done by the author as to explain the nature of a transition from being tiny to when becomes 1 in value. Taking this into account, this article is a way to delineate the physics, inherent in the transition from to which puts a premium upon the growth of the inflaton, due to , with but with changing from , an 10255 increase in magnitude. This increase in magnitude may be the driver of subsequent inflation. When we have a pre quantum, especially if the inequality becomes an equality, and then the transition to marks the start of quantum gravity, whereas our black hole entropy model used to obtain a non zero entropy contribution from 1 million primordial relic black holes, as referenced, comes from Dr. Sen in an October 10 Run Run Shaw lecture in Stonybrook University.
文摘First, we calculate the minimum length for the creation of a 1045 Hz relic Gravitational wave. Next, we look Padamababhan’s inflaton physics, and work done by the author for a modified Heisenberg Uncertainty principle for constraints on a minimum time step. Sciama’s work in “Black hole explosions” (1982) gives us a linkage between a decay rate for black holes, in terms of a life time, and the mass, M of the black hole, which when combined with a simple exposition from Susskind and Hrabovsky (2013) for the most basic evolution the time change in energy E(t), which is how we form a first order treatment of the square of a minimum time step . We then reference what was done by Ng (2008) as far as infinite quantum statistics, for entropy as a particle count, and from first principle get constraints upon entropy production, as a function of boundaries on minimum time step. We assume massive Gravity, and obtain a peak 1036 Giga Hertz frequency range (1045 Hertz) for relic Gravitational waves, and Gravitons.
文摘The old classical problems of theoretical physics are revisited from the point of view of nonlocal physics. Nonlocal physics leads to very complicated mathematical apparatus. Here, we explain the main principles of nonlocal physics using transparent considerations and animations.
基金The Research Center for Advanced Materials Science (RCAMS)at King Khalid University,Saudi Arabia is acknowledged for funding this work under the grant number RCAMS/KKU/016-22。
文摘The separation of rare earth elements using diatomite M45 from aqueous solutions was studied.The experimental isotherms for the adsorption of trivalent lanthanum,cerium,and neodymium cations on this adsorbent were quantified under strongly acidic conditions(pH 2)at 298-328 K.The adsorption equilibria of these earth elements were analyzed using two statistical physics models(homogeneous and heterogeneous monolayer models).The results show that the adsorption of these ions implies a multiionic mechanism,which is exothermic.Si-containing functional groups are responsible for the adsorption of these rare-earth elements on the diatomite surface.A heterogeneous statistical physics model confirms that two Si-based functional groups participate in the separation of these cations.The calculated adsorption capacities at saturation follow the order:neodymium>cerium>lanthanum.Calculated interaction energies range from 28600 to 40100 J/mol,indicating physical adsorption on diatomite M45.This study demonstrates that diatomite M45 is a promising separation medium that can be used for the recovery of REEs dissolved in aqueous solutions via adsorption.