Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimenta...Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimentary rocks fractured by ScCO_(2).The breakdown pressure,fracture parameters,mineral composition,bedding plane angle and permeability are discussed.We also compare the differences between sedimentary rock and granite fractured by ScCO_(2),ultimately noting problems and suggesting solutions and strategies for the future.The analysis found that the breakdown pressure of ScCO_(2)was reduced 6.52%–52.31%compared with that of using water.ScCO_(2)tends to produce a complex fracture morphology with significantly higher permeability.When compared with water,the fracture aperture of ScCO_(2)was decreased by 4.10%–72.33%,the tortuosity of ScCO_(2)was increased by 5.41%–70.98%and the fractal dimension of ScCO_(2)was increased by 4.55%–8.41%.The breakdown pressure of sandstone is more sensitive to the nature of the fracturing fluid,but fracture aperture is less sensitive to fracturing fluid than for shale and coal.Compared with granite,the tortuosity of sedimentary rock is more sensitive to the fracturing fluid and the fracture fractal dimension is less sensitive to the fracturing fluid.Existing research shows that ScCO_(2)has the advantages of low breakdown pressure,good fracture creation and environmental protection.It is recommended that research be conducted in terms of sample terms,experimental conditions,effectiveness evaluation and theoretical derivation in order to promote the application of ScCO_(2)reformed reservoirs in the future.展开更多
The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercri...The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercritical (ultra-supercritical) technology, the corresponding revelations are given in this paper. That is: It is an inevitable choice to develop supercritical (ultra-supercritical) technology if we want to improve the thermal efficiency and heat efficiency.展开更多
Use a 1000MW ultra-supercritical tower boiler as the research object. On the basis of one dimensional model, simplify the tube heat transfer model and the radiation heat transfer model;establish the two-dimensional ar...Use a 1000MW ultra-supercritical tower boiler as the research object. On the basis of one dimensional model, simplify the tube heat transfer model and the radiation heat transfer model;establish the two-dimensional area calculation model with the regional method;?summarize the heat load distribution of flue gas temperature and water wall surface;and compare with the measured data. The error range of the result is acceptable on the project. The distribution of water wall surface heat load along the furnace width and the area where heat transfer deterioration?cause easily along the furnace height direction are studied with the model and algorithm on different boiler load conditions. All these provide the reference for the design and operation of the ultra supercritical boiler.展开更多
Free abrasive particle machining in simple machine such as: honing, polishing can get higher surface finish mirror, but surface error, and working procedure is hard to control. Therefore, the vertical disposed ultra-p...Free abrasive particle machining in simple machine such as: honing, polishing can get higher surface finish mirror, but surface error, and working procedure is hard to control. Therefore, the vertical disposed ultra-precision plane honing method by ultra-particle diamond honing wheel is put forward to. The results of experiments indicate: plane-honing wheel has higher machining accuracy and machining efficiency. But at the same time the structure parameters of honing wheel effects on machining accuracy. By analyzing the relation of honing wheel structure parameters and workpiece machining accuracy, the relation of honing wheel and wear coefficient, then this paper gets honing wheel structure parameters in the condition of best accuracy coefficient and wear coefficient, and resolve the problem of choosing honing wheel structure parameters in ultra-precision plane honing at last. This paper analyses the relation of honing wheel structure parameters and workpiece machining accuracy coefficient and wear coefficient, by building relative movement math model of honing wheel and workpiece in plane honing. Through theory calculating, the result indicate: about honing machine tools for large volume manufacture, honing wheel wear is main effect factor, so honing wheel should adopt obverse triangle radial structure. About honing machining for high accuracy and low-batch quantities, machining accuracy coefficient is main factors; so honing wheel should adopt reverse triangle radial structure. Neglected the manufacturing factors of honing wheel, then we can design honing wheel with high power curve structure to meet the need of machining accuracy coefficient and honing wheel wear coefficient in higher accuracy honing.展开更多
Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature ...Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.展开更多
Supercritical carbon dioxide microemulsions are great medium to combine two immiscible substances through forming nanoscale polar cores in nonpolar continuous phase with the help of proper surfactants. The properties ...Supercritical carbon dioxide microemulsions are great medium to combine two immiscible substances through forming nanoscale polar cores in nonpolar continuous phase with the help of proper surfactants. The properties of microemulsions could be significantly affected by their constituents and structures. In this work, molecular dynamics simulation was implemented to study supercritical carbon dioxide microemulsions containing ionic liquid [bmim][PF6] and water by adding surfactant Ls-36. Results showed that the above components could form spherical aggregates in CO2 bulk phase with [bmim][PF6] and some water as the inner core, surfactant headgroups and water as the intermediate shell, and surfactant tails as the outer shell. The microstructure information about the outer shell was further investigated by defining an angle between the surfactant tail and the normal direction of the aggregate outer surface, which ranged from 78° to 125°. The influence of the ionic liquid content on the size and structure of microemulsions was explored and the best molar ratio between the ionic liquid and surfactant was around 1.25 for getting maximum water solubility.展开更多
Solubility of the silver nitrate in the supercritical carbon dioxide containing ethanol and ethylene glycol as double cosolvents was measured under certain pressure and temperature range(10–25 MPa, 323.15–333.15 K)....Solubility of the silver nitrate in the supercritical carbon dioxide containing ethanol and ethylene glycol as double cosolvents was measured under certain pressure and temperature range(10–25 MPa, 323.15–333.15 K). The impact of the pressure and temperature on the solubility was also investigated. Based on the experiment data,a correlation model concerning solid's solubility in supercritical fluids was established by combining the solubility parameter with the thermodynamic equation when a binary interaction parameter and a mixed solvent solubility parameter were defined. Experiments show the solubility of AgNO_3 increases with the pressure at a certain temperature. However, the influence of temperature is related to a pressure defined as the turnover pressure(12.3 MPa). When the pressure is higher(or lower) than this turnover pressure, silver nitrate's solubility shows increasing(or decreasing) trend as the temperature rises. Satisfactory accuracy of our presented model was revealed by comparing experimental data with calculated results.展开更多
The supercritical fluid is used extensively, especially in substance extraction. The extraction of many substances has reached the economic-scale industrial bulk production stage. However, the research on the wastewat...The supercritical fluid is used extensively, especially in substance extraction. The extraction of many substances has reached the economic-scale industrial bulk production stage. However, the research on the wastewater-free dyeing technique replacing water as dissolvent is still at a development stage. This study introduced the development situation of supercritical fluid dyeing technique, and described the evolution of stock dyeing, measurement of solubility of dye, studies of dyeing kinetics and instrument application studies, in order to provide related data for relevant studies in further development of this technique.展开更多
A four-parameter, Ghoderao–Dalvi–Narayan 2 cubic equation of state(GDN2 CEOS), is presented which incorporates the following: 1. The experimental value of the critical compressibility factor has been used as a fixed...A four-parameter, Ghoderao–Dalvi–Narayan 2 cubic equation of state(GDN2 CEOS), is presented which incorporates the following: 1. The experimental value of the critical compressibility factor has been used as a fixed input parameter for calculations;2. All the parameters(a, b, c, d) of CEOS are temperature dependent functions in the subcritical region and are temperature independent functions in the supercritical region and;3. A new α function is introduced with two compound specific parameters which are estimated by matching saturated vapor pressure at two fixed temperature points Tr= 0.5, 0.7. Our formalism enables us to cast three of the four parameters of the CEOS as a function of the remaining parameter. The proposed CEOS is used to predict properties of 334 pure compounds, including saturated vapor pressure and liquid density, compressed liquid density, heat capacities at the constant pressure and volume, enthalpy of vaporization, sound velocity. To calculate thermodynamic properties of a pure compound, the present CEOS require the critical temperature, the critical pressure, the Pitzer’s acentric factor, the critical compressibility factor, and two parameters of the alpha function. The saturated liquid density predictions for pure fluids are very accurate when compared with GDN1(Ghoderao–Dalvi–Narayan 1),MPR(Modified Peng–Robinson), and PT(Patel–Teja) equations of state. Unlike MPR EOS, the proposed temperature dependent covolume parameter b in the present work satisfies all the constraints mentioned in the literature to avoid thermodynamic inconsistencies at the extreme temperature and pressure. Using van der Waals one-fluid mixing rule, the present CEOS is further used to predict bubble pressure and the vapor mole fraction of binary mixtures.展开更多
In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC ...In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC is not yet applied for drug quality control in the daily routine framework. Among the numerous reported SFC methods, none of them could be found to fully satisfy to all steps of the analytical method lifecycle. Thereby, the present contribution aims to provide an overview of the current and past achievements related to SFC techniques, with a targeted attention to this lifecycle and its successive steps. The included discussions were therefore structured accordingly and emphasizing the analytical method lifecycle in accord with the International Conference on Harmonisation (ICH). Recent and important scientific outputs in the field of analytical SFC, as well as instrumental evolution, qualification strategies, method development methodologies and discussions on the topic of method validation are reviewed.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.42141009,41825018,41888101 and 41902289)the Key Research Program of the Institute of Geology and Geophysics,CAS(Grant No.IGGCAS-202201)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)。
文摘Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimentary rocks fractured by ScCO_(2).The breakdown pressure,fracture parameters,mineral composition,bedding plane angle and permeability are discussed.We also compare the differences between sedimentary rock and granite fractured by ScCO_(2),ultimately noting problems and suggesting solutions and strategies for the future.The analysis found that the breakdown pressure of ScCO_(2)was reduced 6.52%–52.31%compared with that of using water.ScCO_(2)tends to produce a complex fracture morphology with significantly higher permeability.When compared with water,the fracture aperture of ScCO_(2)was decreased by 4.10%–72.33%,the tortuosity of ScCO_(2)was increased by 5.41%–70.98%and the fractal dimension of ScCO_(2)was increased by 4.55%–8.41%.The breakdown pressure of sandstone is more sensitive to the nature of the fracturing fluid,but fracture aperture is less sensitive to fracturing fluid than for shale and coal.Compared with granite,the tortuosity of sedimentary rock is more sensitive to the fracturing fluid and the fracture fractal dimension is less sensitive to the fracturing fluid.Existing research shows that ScCO_(2)has the advantages of low breakdown pressure,good fracture creation and environmental protection.It is recommended that research be conducted in terms of sample terms,experimental conditions,effectiveness evaluation and theoretical derivation in order to promote the application of ScCO_(2)reformed reservoirs in the future.
文摘The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercritical (ultra-supercritical) technology, the corresponding revelations are given in this paper. That is: It is an inevitable choice to develop supercritical (ultra-supercritical) technology if we want to improve the thermal efficiency and heat efficiency.
文摘Use a 1000MW ultra-supercritical tower boiler as the research object. On the basis of one dimensional model, simplify the tube heat transfer model and the radiation heat transfer model;establish the two-dimensional area calculation model with the regional method;?summarize the heat load distribution of flue gas temperature and water wall surface;and compare with the measured data. The error range of the result is acceptable on the project. The distribution of water wall surface heat load along the furnace width and the area where heat transfer deterioration?cause easily along the furnace height direction are studied with the model and algorithm on different boiler load conditions. All these provide the reference for the design and operation of the ultra supercritical boiler.
文摘Free abrasive particle machining in simple machine such as: honing, polishing can get higher surface finish mirror, but surface error, and working procedure is hard to control. Therefore, the vertical disposed ultra-precision plane honing method by ultra-particle diamond honing wheel is put forward to. The results of experiments indicate: plane-honing wheel has higher machining accuracy and machining efficiency. But at the same time the structure parameters of honing wheel effects on machining accuracy. By analyzing the relation of honing wheel structure parameters and workpiece machining accuracy, the relation of honing wheel and wear coefficient, then this paper gets honing wheel structure parameters in the condition of best accuracy coefficient and wear coefficient, and resolve the problem of choosing honing wheel structure parameters in ultra-precision plane honing at last. This paper analyses the relation of honing wheel structure parameters and workpiece machining accuracy coefficient and wear coefficient, by building relative movement math model of honing wheel and workpiece in plane honing. Through theory calculating, the result indicate: about honing machine tools for large volume manufacture, honing wheel wear is main effect factor, so honing wheel should adopt obverse triangle radial structure. About honing machining for high accuracy and low-batch quantities, machining accuracy coefficient is main factors; so honing wheel should adopt reverse triangle radial structure. Neglected the manufacturing factors of honing wheel, then we can design honing wheel with high power curve structure to meet the need of machining accuracy coefficient and honing wheel wear coefficient in higher accuracy honing.
基金National Natural Science Foundation of China(No.60974119)
文摘Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.
基金Supported by the National Natural Science Foundation of China(21376045,21506027)Petrochemicals Joint Fund of National Natural Science Foundation of ChinaChina National Petroleum Corporation(U1662130).
文摘Supercritical carbon dioxide microemulsions are great medium to combine two immiscible substances through forming nanoscale polar cores in nonpolar continuous phase with the help of proper surfactants. The properties of microemulsions could be significantly affected by their constituents and structures. In this work, molecular dynamics simulation was implemented to study supercritical carbon dioxide microemulsions containing ionic liquid [bmim][PF6] and water by adding surfactant Ls-36. Results showed that the above components could form spherical aggregates in CO2 bulk phase with [bmim][PF6] and some water as the inner core, surfactant headgroups and water as the intermediate shell, and surfactant tails as the outer shell. The microstructure information about the outer shell was further investigated by defining an angle between the surfactant tail and the normal direction of the aggregate outer surface, which ranged from 78° to 125°. The influence of the ionic liquid content on the size and structure of microemulsions was explored and the best molar ratio between the ionic liquid and surfactant was around 1.25 for getting maximum water solubility.
基金Supported by the National Natural Science Foundation of China(U1662130,21506027)China Postdoctoral Science Foundation(2017T100175,2015M571307)the Fundamental Research Funds for the Central Universities(DUT17JC34)
文摘Solubility of the silver nitrate in the supercritical carbon dioxide containing ethanol and ethylene glycol as double cosolvents was measured under certain pressure and temperature range(10–25 MPa, 323.15–333.15 K). The impact of the pressure and temperature on the solubility was also investigated. Based on the experiment data,a correlation model concerning solid's solubility in supercritical fluids was established by combining the solubility parameter with the thermodynamic equation when a binary interaction parameter and a mixed solvent solubility parameter were defined. Experiments show the solubility of AgNO_3 increases with the pressure at a certain temperature. However, the influence of temperature is related to a pressure defined as the turnover pressure(12.3 MPa). When the pressure is higher(or lower) than this turnover pressure, silver nitrate's solubility shows increasing(or decreasing) trend as the temperature rises. Satisfactory accuracy of our presented model was revealed by comparing experimental data with calculated results.
文摘The supercritical fluid is used extensively, especially in substance extraction. The extraction of many substances has reached the economic-scale industrial bulk production stage. However, the research on the wastewater-free dyeing technique replacing water as dissolvent is still at a development stage. This study introduced the development situation of supercritical fluid dyeing technique, and described the evolution of stock dyeing, measurement of solubility of dye, studies of dyeing kinetics and instrument application studies, in order to provide related data for relevant studies in further development of this technique.
基金supported by the University Grants Commission (UGC – BSR)
文摘A four-parameter, Ghoderao–Dalvi–Narayan 2 cubic equation of state(GDN2 CEOS), is presented which incorporates the following: 1. The experimental value of the critical compressibility factor has been used as a fixed input parameter for calculations;2. All the parameters(a, b, c, d) of CEOS are temperature dependent functions in the subcritical region and are temperature independent functions in the supercritical region and;3. A new α function is introduced with two compound specific parameters which are estimated by matching saturated vapor pressure at two fixed temperature points Tr= 0.5, 0.7. Our formalism enables us to cast three of the four parameters of the CEOS as a function of the remaining parameter. The proposed CEOS is used to predict properties of 334 pure compounds, including saturated vapor pressure and liquid density, compressed liquid density, heat capacities at the constant pressure and volume, enthalpy of vaporization, sound velocity. To calculate thermodynamic properties of a pure compound, the present CEOS require the critical temperature, the critical pressure, the Pitzer’s acentric factor, the critical compressibility factor, and two parameters of the alpha function. The saturated liquid density predictions for pure fluids are very accurate when compared with GDN1(Ghoderao–Dalvi–Narayan 1),MPR(Modified Peng–Robinson), and PT(Patel–Teja) equations of state. Unlike MPR EOS, the proposed temperature dependent covolume parameter b in the present work satisfies all the constraints mentioned in the literature to avoid thermodynamic inconsistencies at the extreme temperature and pressure. Using van der Waals one-fluid mixing rule, the present CEOS is further used to predict bubble pressure and the vapor mole fraction of binary mixtures.
文摘In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC is not yet applied for drug quality control in the daily routine framework. Among the numerous reported SFC methods, none of them could be found to fully satisfy to all steps of the analytical method lifecycle. Thereby, the present contribution aims to provide an overview of the current and past achievements related to SFC techniques, with a targeted attention to this lifecycle and its successive steps. The included discussions were therefore structured accordingly and emphasizing the analytical method lifecycle in accord with the International Conference on Harmonisation (ICH). Recent and important scientific outputs in the field of analytical SFC, as well as instrumental evolution, qualification strategies, method development methodologies and discussions on the topic of method validation are reviewed.