In this paper we define and study chain conditions for Hilbert C*-modules through their C*-algebras of compact operators and discuss their perseverance under Morita equivalence and tensor products. We show that thes...In this paper we define and study chain conditions for Hilbert C*-modules through their C*-algebras of compact operators and discuss their perseverance under Morita equivalence and tensor products. We show that these chain conditions are passed from the C*-algebra to its Hilbert module under certain conditions. We also study chain conditions for Hilbert modules coming from inclusion of C*-algebra with a faithful conditional expectation.展开更多
Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Ge...Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful^* -representation so that it becomes a Hopf C^* -algebra. The canonical embedding map of H into D(H) is isometric.展开更多
In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to inv...In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).展开更多
We show that the following classes of C*-algebras in the classes t are inherited by simple unital C*-algebras in the classes TAft : (1) simple unital purely infinite C*-algebras, (2) unital isometrically rich ...We show that the following classes of C*-algebras in the classes t are inherited by simple unital C*-algebras in the classes TAft : (1) simple unital purely infinite C*-algebras, (2) unital isometrically rich C*-algebras, (3) unital Riesz interpolation C*-algebras.展开更多
We study the Hopf *-algebra structures on the Hopf algebra H(1, q) over C. It is shown that H(1, q) is a Hopf *-algebra if and only if |q| = 1 or q is a real number. Then the Hopf *-algebra structures on H(1...We study the Hopf *-algebra structures on the Hopf algebra H(1, q) over C. It is shown that H(1, q) is a Hopf *-algebra if and only if |q| = 1 or q is a real number. Then the Hopf *-algebra structures on H(1, q) are classified up to the equivalence of Hopf *-algebra structures.展开更多
It is shown that an n × n matrix of continuous linear maps from a pro-C^*-algebra A to L(H), which verifies the condition of complete positivity, is of the form [V^*TijФ(·)V]^n i,where Ф is a represe...It is shown that an n × n matrix of continuous linear maps from a pro-C^*-algebra A to L(H), which verifies the condition of complete positivity, is of the form [V^*TijФ(·)V]^n i,where Ф is a representation of A on a Hilbert space K, V is a bounded linear operator from H to K, and j=1,[Tij]^n i,j=1 is a positive element in the C^*-algebra of all n×n matrices over the commutant of Ф(A) in L(K). This generalizes a result of C. Y.Suen in Proc. Amer. Math. Soc., 112(3), 1991, 709-712. Also, a covariant version of this construction is given.展开更多
We study diagonal invariant ideals of topologically graded C*-algebras over discrete groups. Since all Toeplitz algebras defined on discrete groups are topologically graded, the results in this paper have improved the...We study diagonal invariant ideals of topologically graded C*-algebras over discrete groups. Since all Toeplitz algebras defined on discrete groups are topologically graded, the results in this paper have improved the first author's previous works on this topic.展开更多
Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at...Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at infinity. The result is generalized to the ease of Hopf C^*-algebra, where G is altered by a locally compact group. Using the isomorphic representation, the counit ε and the antipode S of a commutative Hopf C^*-algebra are proposed.展开更多
We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-tr...We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-triple as the minimum reduced modulus of the mapping Q(a). It is shown that the quadratic conorm of a coincides with the infimum of the squares of the points in the triple spectrum of a. It is established that a contractive bijection between JBW^*-triples is a triple isomorphism if, and only if, it preserves quadratic conorms. The continuity of the quadratic conorm and the generalized inverse are discussed. Some applications to C^*-algebras and von Neumann algebras are also studied.展开更多
We study K-theory of continuous deformations of C*-algebras to obtain that their K-theory is the same as that of the fiber at zero. We also consider continuous or discontinuous deformations of Cuntz and Toeplitz alge...We study K-theory of continuous deformations of C*-algebras to obtain that their K-theory is the same as that of the fiber at zero. We also consider continuous or discontinuous deformations of Cuntz and Toeplitz algebras.展开更多
In this paper, we will discuss some properties of biprojection-commutative elements which are relevant to the classification of certain infinite C*-algebras,, and define an important invariant s(A) of C*-algebra A...In this paper, we will discuss some properties of biprojection-commutative elements which are relevant to the classification of certain infinite C*-algebras,, and define an important invariant s(A) of C*-algebra A as well as give some basic properties with regard to s(A). Moreover we prove that the invariant s(A) has continuity.展开更多
Further to the functional representations of C^*-algebras proposed by R. Cirelli and A. Manik, we consider the uniform Kahler bundle (UKB) description of some C^*-algebraic subjects. In particular, we obtain a one...Further to the functional representations of C^*-algebras proposed by R. Cirelli and A. Manik, we consider the uniform Kahler bundle (UKB) description of some C^*-algebraic subjects. In particular, we obtain a one-to- one correspondence between closed ideals of a C^*-algebra A and full uniform Kahler subbundles over open subsets of the base space of the UKB associated with A. In addition, we present a geometric description of the pure state space of hereditary C^*-subalgebras and show that if B is a hereditary C^*-subalgebra of A, the UKB of B is a kind of Kahler subbundle of the UKB of A. As a simple example, we consider hereditary C^*-subalgebras of the C^*-algebra of compact operators on a Hilbert space. Finally, we remark that each hereditary C^*- subalgebra of A also can be naturally characterized as a uniform holomorphic Hilbert bundle.展开更多
We prove the Hyers-Ulam stability of linear N-isometries in linear N-normed Banach mod- ules over a unital C^*-algebra. The main purpose of this paper is to investigate N-isometric C^*-algebra isomorphisms between l...We prove the Hyers-Ulam stability of linear N-isometries in linear N-normed Banach mod- ules over a unital C^*-algebra. The main purpose of this paper is to investigate N-isometric C^*-algebra isomorphisms between linear N-normed C^*-algebras, N-isometric Poisson C^*-algebra isomorphisms between linear N-normed Poisson C^*-algebras, N-isometric Lie C^*-algebra isomorphisms between linear N-normed Lie C^*-algebras, N-isometric Poisson JC^*-algebra isomorphisms between linear N-normed Poisson JC^*-algebras, and N-isometric Lie JC^*-algebra isomorphisms between linear N-normed Lie JC^*-algebras. Moreover, we prove the Hyers- Ulam stability of t:heir N-isometric homomorphisms.展开更多
Let E be a row-finite directed graph, let G be a locally compact abelian group with dual group G = F, let w be a labeling map from E* to F, and let (C*(E), G,a^w) be the C*-dynamical system defined by w. Some m...Let E be a row-finite directed graph, let G be a locally compact abelian group with dual group G = F, let w be a labeling map from E* to F, and let (C*(E), G,a^w) be the C*-dynamical system defined by w. Some mappings concerning the AF-embedding construction of C* (E) X(aw) G are studied in more detail. Several necessary conditions of AF-embedding and some properties of almost proper labeling map are obtained. Moreover it is proved that if E is constructed by attaching some l-loops to a directed graph T consisting of some rooted directed trees and G is compact, then oJ is k almost proper, that is a sufficient condition for AF-embedding, if and only if ∑j^Kk=1^wγ j ≠fi 1r for any loop γi, γ2 …γk attached to one path in T展开更多
Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monoton...Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monotone product ,A1 △→ A2 is nuclear if and only if the C^*-algebras ,A1 and A2 both are nuclear.展开更多
In this paper, we prove the Hyers-Ulam-Rassias stability of isometric homomorphisms in proper CQ*-algebras for the following Cauchy-Jensen additive mapping: 2f[(x1+x2)/2+y]=f(x1)+f(x2)+2f(y) ...In this paper, we prove the Hyers-Ulam-Rassias stability of isometric homomorphisms in proper CQ*-algebras for the following Cauchy-Jensen additive mapping: 2f[(x1+x2)/2+y]=f(x1)+f(x2)+2f(y) The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in the paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. This is applied to investigate isometric isomorphisms between proper CQ*-algebras.展开更多
文摘In this paper we define and study chain conditions for Hilbert C*-modules through their C*-algebras of compact operators and discuss their perseverance under Morita equivalence and tensor products. We show that these chain conditions are passed from the C*-algebra to its Hilbert module under certain conditions. We also study chain conditions for Hilbert modules coming from inclusion of C*-algebra with a faithful conditional expectation.
文摘Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful^* -representation so that it becomes a Hopf C^* -algebra. The canonical embedding map of H into D(H) is isometric.
基金supported by the Daejin University grants in 2010
文摘In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).
文摘We show that the following classes of C*-algebras in the classes t are inherited by simple unital C*-algebras in the classes TAft : (1) simple unital purely infinite C*-algebras, (2) unital isometrically rich C*-algebras, (3) unital Riesz interpolation C*-algebras.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11171291).
文摘We study the Hopf *-algebra structures on the Hopf algebra H(1, q) over C. It is shown that H(1, q) is a Hopf *-algebra if and only if |q| = 1 or q is a real number. Then the Hopf *-algebra structures on H(1, q) are classified up to the equivalence of Hopf *-algebra structures.
基金Project supported by the grant CNCSIS (Romanian National Council for Research in High Education)-code A 1065/2006.
文摘It is shown that an n × n matrix of continuous linear maps from a pro-C^*-algebra A to L(H), which verifies the condition of complete positivity, is of the form [V^*TijФ(·)V]^n i,where Ф is a representation of A on a Hilbert space K, V is a bounded linear operator from H to K, and j=1,[Tij]^n i,j=1 is a positive element in the C^*-algebra of all n×n matrices over the commutant of Ф(A) in L(K). This generalizes a result of C. Y.Suen in Proc. Amer. Math. Soc., 112(3), 1991, 709-712. Also, a covariant version of this construction is given.
基金Supported by the National Natural Science Foundation of China(10371051)
文摘We study diagonal invariant ideals of topologically graded C*-algebras over discrete groups. Since all Toeplitz algebras defined on discrete groups are topologically graded, the results in this paper have improved the first author's previous works on this topic.
文摘Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at infinity. The result is generalized to the ease of Hopf C^*-algebra, where G is altered by a locally compact group. Using the isomorphic representation, the counit ε and the antipode S of a commutative Hopf C^*-algebra are proposed.
基金I+D MEC Projects No.MTM 2005-02541,MTM 2004-03882Junta de Andalucfa Grants FQM 0199,FQM 0194,FQM 1215the PCI Project No.A/4044/05 of the Spanish AECI
文摘We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-triple as the minimum reduced modulus of the mapping Q(a). It is shown that the quadratic conorm of a coincides with the infimum of the squares of the points in the triple spectrum of a. It is established that a contractive bijection between JBW^*-triples is a triple isomorphism if, and only if, it preserves quadratic conorms. The continuity of the quadratic conorm and the generalized inverse are discussed. Some applications to C^*-algebras and von Neumann algebras are also studied.
文摘We study K-theory of continuous deformations of C*-algebras to obtain that their K-theory is the same as that of the fiber at zero. We also consider continuous or discontinuous deformations of Cuntz and Toeplitz algebras.
基金Supported by National Natural Science Foundation of China (Grant No. 10771161)
文摘In this paper, we will discuss some properties of biprojection-commutative elements which are relevant to the classification of certain infinite C*-algebras,, and define an important invariant s(A) of C*-algebra A as well as give some basic properties with regard to s(A). Moreover we prove that the invariant s(A) has continuity.
文摘Further to the functional representations of C^*-algebras proposed by R. Cirelli and A. Manik, we consider the uniform Kahler bundle (UKB) description of some C^*-algebraic subjects. In particular, we obtain a one-to- one correspondence between closed ideals of a C^*-algebra A and full uniform Kahler subbundles over open subsets of the base space of the UKB associated with A. In addition, we present a geometric description of the pure state space of hereditary C^*-subalgebras and show that if B is a hereditary C^*-subalgebra of A, the UKB of B is a kind of Kahler subbundle of the UKB of A. As a simple example, we consider hereditary C^*-subalgebras of the C^*-algebra of compact operators on a Hilbert space. Finally, we remark that each hereditary C^*- subalgebra of A also can be naturally characterized as a uniform holomorphic Hilbert bundle.
基金The first author is supported by Korea Research Foundation Grant KRF-2005-041-C00027
文摘We prove the Hyers-Ulam stability of linear N-isometries in linear N-normed Banach mod- ules over a unital C^*-algebra. The main purpose of this paper is to investigate N-isometric C^*-algebra isomorphisms between linear N-normed C^*-algebras, N-isometric Poisson C^*-algebra isomorphisms between linear N-normed Poisson C^*-algebras, N-isometric Lie C^*-algebra isomorphisms between linear N-normed Lie C^*-algebras, N-isometric Poisson JC^*-algebra isomorphisms between linear N-normed Poisson JC^*-algebras, and N-isometric Lie JC^*-algebra isomorphisms between linear N-normed Lie JC^*-algebras. Moreover, we prove the Hyers- Ulam stability of t:heir N-isometric homomorphisms.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10771161, 11071188)
文摘Let E be a row-finite directed graph, let G be a locally compact abelian group with dual group G = F, let w be a labeling map from E* to F, and let (C*(E), G,a^w) be the C*-dynamical system defined by w. Some mappings concerning the AF-embedding construction of C* (E) X(aw) G are studied in more detail. Several necessary conditions of AF-embedding and some properties of almost proper labeling map are obtained. Moreover it is proved that if E is constructed by attaching some l-loops to a directed graph T consisting of some rooted directed trees and G is compact, then oJ is k almost proper, that is a sufficient condition for AF-embedding, if and only if ∑j^Kk=1^wγ j ≠fi 1r for any loop γi, γ2 …γk attached to one path in T
基金the Youth Foundation of Sichuan Education Department (No.2003B017)the Doctoral Foundation of Chongqing Normal University (No.08XLB013)
文摘Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monotone product ,A1 △→ A2 is nuclear if and only if the C^*-algebras ,A1 and A2 both are nuclear.
基金supported by Korea Science & Engineering Foundation (Grant No. F01-2006-000-10111-0)
文摘In this paper, we prove the Hyers-Ulam-Rassias stability of isometric homomorphisms in proper CQ*-algebras for the following Cauchy-Jensen additive mapping: 2f[(x1+x2)/2+y]=f(x1)+f(x2)+2f(y) The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in the paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. This is applied to investigate isometric isomorphisms between proper CQ*-algebras.