期刊文献+
共找到462篇文章
< 1 2 24 >
每页显示 20 50 100
Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining
1
作者 Abdirahman Alasow Marek Perkowski 《Journal of Quantum Information Science》 CAS 2023年第1期1-23,共23页
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre... Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits. 展开更多
关键词 data mining association rule mining frequent Pattern Apriori algorithm Quantum Counter Quantum Comparator Grover’s Search algorithm
下载PDF
A Fast Distributed Algorithm for Association Rule Mining Based on Binary Coding Mapping Relation
2
作者 CHEN Geng NI Wei-wei +1 位作者 ZHU Yu-quan SUN Zhi-hui 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期27-30,共4页
Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only ... Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient. 展开更多
关键词 frequent itemsets distributed association rule mining relation of itemsets-binary data
下载PDF
Fast FP-Growth for association rule mining 被引量:1
3
作者 杨明 杨萍 +1 位作者 吉根林 孙志挥 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期320-323,共4页
In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not cons... In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient. 展开更多
关键词 data mining frequent itemsets association rules frequent pattern tree(FP-tree)
下载PDF
Mining φ-Frequent Itemset Using FP-Tree
4
作者 李天瑞 《Journal of Modern Transportation》 2001年第1期67-74,共8页
The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of... The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of research activities around this problem. However, traditional association rule mining may often derive many rules in which people are uninterested. This paper reports a generalization of association rule mining called φ association rule mining. It allows people to have different interests on different itemsets that arethe need of real application. Also, it can help to derive interesting rules and substantially reduce the amount of rules. An algorithm based on FP tree for mining φ frequent itemset is presented. It is shown by experiments that the proposed methodis efficient and scalable over large databases. 展开更多
关键词 data processing dataBASES φ association rule mining φ frequent itemset FP tree data mining
下载PDF
Backward Support Computation Method for Positive and Negative Frequent Itemset Mining
5
作者 Mrinmoy Biswas Akash Indrani Mandal Md. Selim Al Mamun 《Journal of Data Analysis and Information Processing》 2023年第1期37-48,共12页
Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on p... Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on positive itemsets generated from frequently occurring itemsets (PFIS). However, there has been a significant study focused on infrequent itemsets with utilization of negative association rules to mine interesting frequent itemsets (NFIS) from transactions. In this work, we propose an efficient backward calculating negative frequent itemset algorithm namely EBC-NFIS for computing backward supports that can extract both positive and negative frequent itemsets synchronously from dataset. EBC-NFIS algorithm is based on popular e-NFIS algorithm that computes supports of negative itemsets from the supports of positive itemsets. The proposed algorithm makes use of previously computed supports from memory to minimize the computation time. In addition, association rules, i.e. positive and negative association rules (PNARs) are generated from discovered frequent itemsets using EBC-NFIS algorithm. The efficiency of the proposed algorithm is verified by several experiments and comparing results with e-NFIS algorithm. The experimental results confirm that the proposed algorithm successfully discovers NFIS and PNARs and runs significantly faster than conventional e-NFIS algorithm. 展开更多
关键词 data mining Positive frequent itemset Negative frequent itemset association rule Backward Support
下载PDF
基于DDMINER分布式数据库系统中频繁项目集的更新 被引量:15
6
作者 吉根林 杨明 +1 位作者 赵斌 孙志挥 《计算机学报》 EI CSCD 北大核心 2003年第10期1387-1392,共6页
给出了一种分布式数据挖掘系统的体系结构DDMINER ,对分布式数据库系统中频繁项目集的更新问题进行探讨 ,既考虑了数据库中事务增加的情况 ,又考虑了事务删除的情况 ;提出了一种基于DDMINER的局部频繁项目集的更新算法ULF和全局频繁项... 给出了一种分布式数据挖掘系统的体系结构DDMINER ,对分布式数据库系统中频繁项目集的更新问题进行探讨 ,既考虑了数据库中事务增加的情况 ,又考虑了事务删除的情况 ;提出了一种基于DDMINER的局部频繁项目集的更新算法ULF和全局频繁项目集的更新算法UGF .该算法能够产生较少数量的候选频繁项目集 ,在求解全局频繁项目集过程中 ,传送候选局部频繁项目集支持数的通信量为O(n) ;将文章提出的算法用Java语言加以实现 ,并对算法性能进行了研究 ;实验结果表明这些算法是正确、可行的 ,并且具有较高的效率. 展开更多
关键词 分布式数据库系统 频繁项目集 分布式数据挖掘系统 体系结构 DDMINER
下载PDF
Multi-Scaling Sampling: An Adaptive Sampling Method for Discovering Approximate Association Rules 被引量:2
7
作者 Cai-YanJia Xie-PingGao 《Journal of Computer Science & Technology》 SCIE EI CSCD 2005年第3期309-318,共10页
One of the obstacles of the efficient association rule mining is theexplosive expansion of data sets since it is costly or impossible to scan large databases, esp., formultiple times. A popular solution to improve the... One of the obstacles of the efficient association rule mining is theexplosive expansion of data sets since it is costly or impossible to scan large databases, esp., formultiple times. A popular solution to improve the speed and scalability of the association rulemining is to do the algorithm on a random sample instead of the entire database. But how toeffectively define and efficiently estimate the degree of error with respect to the outcome of thealgorithm, and how to determine the sample size needed are entangling researches until now. In thispaper, an effective and efficient algorithm is given based on the PAC (Probably Approximate Correct)learning theory to measure and estimate sample error. Then, a new adaptive, on-line, fast samplingstrategy - multi-scaling sampling - is presented inspired by MRA (Multi-Resolution Analysis) andShannon sampling theorem, for quickly obtaining acceptably approximate association rules atappropriate sample size. Both theoretical analysis and empirical study have showed that the Samplingstrategy can achieve a very good speed-accuracy trade-off. 展开更多
关键词 data mining association rule frequent itemset sample error multi-scalingsampling
原文传递
基于Flag-Prefix-Tree的频繁模式挖掘改进算法
8
作者 蒋跃军 郑文 《浙江万里学院学报》 2024年第3期76-81,共6页
稀疏数据集上,条件FP-Tree无法有效压缩且频繁构造开销大,使用伪构造的问题是数据项目未经压缩和过滤导致额外的遍历代价。文章提出了一种简单而新颖的标志前缀树(Flag-Prefix-Tree)和一种新的挖掘稀疏数据集上频繁模式的算法FPT-Mine... 稀疏数据集上,条件FP-Tree无法有效压缩且频繁构造开销大,使用伪构造的问题是数据项目未经压缩和过滤导致额外的遍历代价。文章提出了一种简单而新颖的标志前缀树(Flag-Prefix-Tree)和一种新的挖掘稀疏数据集上频繁模式的算法FPT-Mine。通过Flag-Prefix-Tree中的flag,伪构造条件树可以巧妙地过滤不频繁项目。而且flag可以在挖掘过程中递归地重用,只有非常小的开销,但节省了遍历不频繁项目的大量开销。FPT-Mine以自上向下的顺序遍历Flag-Prefix-Tree,并为每个频繁模式创建一个临时根表(Root table)来伪构造条件树,这样就不需要在每个节点上维护父节点和兄弟节点的链接。此外,FPT-Mine在树上应用了合并技术,这使得FlagPrefix-Tree越来越小。研究表明,FPT-Mine在各种稀疏数据集中具有高性能和可扩展性。FPT-Mine在所有测试数据集中的性能都优于FP-growth,当最小支持度阈值降低时,算法之间的差距增大。 展开更多
关键词 数据挖掘 关联规则 频繁模式 频繁项目集
下载PDF
频繁项集挖掘研究前沿及展望
9
作者 张晴 谭旭 吕欣 《深圳信息职业技术学院学报》 2024年第1期1-14,共14页
频繁项集挖掘是数据挖掘领域的核心任务之一,其目标是发现在数据库中频繁出现的模式。这些模式对于关联规则、分类、异常检测等多个数据挖掘任务都具有重要作用。由于随着项集大小的增加,项集的组合数量呈指数级增长,导致计算复杂性急... 频繁项集挖掘是数据挖掘领域的核心任务之一,其目标是发现在数据库中频繁出现的模式。这些模式对于关联规则、分类、异常检测等多个数据挖掘任务都具有重要作用。由于随着项集大小的增加,项集的组合数量呈指数级增长,导致计算复杂性急剧上升,研究人员一直在努力开发高效的算法来解决这一问题。面向频繁项集挖掘的算法、紧凑表示和前沿应用,深入探讨不同技术的的工作原理、优势和局限性,从而对这一领域的研究现状进行全面总结。最后,进一步探讨了该领域的前沿发展趋势,指出计算效率、基于约束的频繁项集挖掘、模式的可解释性以及算法在不同领域的创新应用等未来潜在研究方向。 展开更多
关键词 频繁项集 数据挖掘 模式增长 关联规则
下载PDF
关联规则挖掘中Apriori算法的研究与改进 被引量:95
10
作者 崔贯勋 李梁 +2 位作者 王柯柯 苟光磊 邹航 《计算机应用》 CSCD 北大核心 2010年第11期2952-2955,共4页
经典的产生频繁项目集的Apriori算法存在多次扫描数据库可能产生大量候选及反复对候选项集和事务进行模式匹配的缺陷,导致了算法的效率较低。为此,对Apriori算法进行以下3方面的改进:改进由k阶频繁项集生成k+1阶候选频繁项集时的连接和... 经典的产生频繁项目集的Apriori算法存在多次扫描数据库可能产生大量候选及反复对候选项集和事务进行模式匹配的缺陷,导致了算法的效率较低。为此,对Apriori算法进行以下3方面的改进:改进由k阶频繁项集生成k+1阶候选频繁项集时的连接和剪枝策略;改进对事务的处理方式,减少Apriori算法中的模式匹配所需的时间开销;改进首次对数据库的处理方法,使得整个算法只扫描一次数据库,并由此提出了改进算法。实验结果表明,改进算法在性能上得到了明显提高。 展开更多
关键词 数据挖掘 关联规则 APRIORI算法 频繁项集 候选项集
下载PDF
关联规则挖掘综述 被引量:134
11
作者 蔡伟杰 张晓辉 +1 位作者 朱建秋 朱扬勇 《计算机工程》 CAS CSCD 北大核心 2001年第5期31-33,49,共4页
介绍了关联规则挖掘的研究性况,提出了关联规则的分类方法,对一些典型算法进行了分析和秤价,指出传统关系规则衡量标准的不足,归纳出关联规则的价值衡量方,展望了关联规则挖掘的未来研究方向。
关键词 数据挖掘 关联规则 OLAP 数据库 知识发现
下载PDF
基于FP-Tree的最大频繁项目集挖掘及更新算法 被引量:164
12
作者 宋余庆 朱玉全 +1 位作者 孙志挥 陈耿 《软件学报》 EI CSCD 北大核心 2003年第9期1586-1592,共7页
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tr... 挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用. 展开更多
关键词 数据挖掘 最大频繁项目集 关联规则 频繁模式树 增量式更新
下载PDF
一种有效的隐私保护关联规则挖掘方法 被引量:53
13
作者 张鹏 童云海 +2 位作者 唐世渭 杨冬青 马秀莉 《软件学报》 EI CSCD 北大核心 2006年第8期1764-1774,共11页
隐私保护是当前数据挖掘领域中一个十分重要的研究问题,其目标是要在不精确访问真实原始数据的条件下,得到准确的模型和分析结果.为了提高对隐私数据的保护程度和挖掘结果的准确性,提出一种有效的隐私保护关联规则挖掘方法.首先将数据... 隐私保护是当前数据挖掘领域中一个十分重要的研究问题,其目标是要在不精确访问真实原始数据的条件下,得到准确的模型和分析结果.为了提高对隐私数据的保护程度和挖掘结果的准确性,提出一种有效的隐私保护关联规则挖掘方法.首先将数据干扰和查询限制这两种隐私保护的基本策略相结合,提出了一种新的数据随机处理方法,即部分隐藏的随机化回答(randomizedresponsewithpartialhiding,简称RRPH)方法,以对原始数据进行变换和隐藏.然后以此为基础,针对经过RRPH方法处理后的数据,给出了一种简单而又高效的频繁项集生成算法,进而实现了隐私保护的关联规则挖掘.理论分析和实验结果均表明,基于RRPH的隐私保护关联规则挖掘方法具有很好的隐私性、准确性、高效性和适用性. 展开更多
关键词 隐私保护 数据挖掘 关联规则 频繁项集 随机化回答
下载PDF
关联规则挖掘中若干关键技术的研究 被引量:62
14
作者 陈耿 朱玉全 +3 位作者 杨鹤标 陆介平 宋余庆 孙志挥 《计算机研究与发展》 EI CSCD 北大核心 2005年第10期1785-1789,共5页
Apriori类算法已经成为关联规则挖掘中的经典算法,其技术难点及运算量主要集中在以下两个方面:①如何确定候选频繁项目集和计算项目集的支持数;②如何减少候选频繁项目集的个数以及扫描数据库的次数·目前已提出了许多改进方法来解... Apriori类算法已经成为关联规则挖掘中的经典算法,其技术难点及运算量主要集中在以下两个方面:①如何确定候选频繁项目集和计算项目集的支持数;②如何减少候选频繁项目集的个数以及扫描数据库的次数·目前已提出了许多改进方法来解决第2个问题,并已取得了很好的效果·然而,对于第1个问题,仍沿用Apriori算法中的解决方案,其运算量是较大的·为此,提出了一种基于二进制形式的候选频繁项目集生成和相应的计算支持数算法,该算法只需对挖掘对象进行一些“或”、“与”、“异或”等逻辑运算操作,显著降低了算法的实现难度,将该算法与Apriori类算法相结合,可以进一步提高算法的执行效率,实验结果也表明算法是有效、快速的· 展开更多
关键词 数据挖掘 关联规则 频繁项目集
下载PDF
基于特征挖掘的电网故障诊断方法 被引量:46
15
作者 李再华 白晓民 +5 位作者 周子冠 许婧 李晓珺 张霖 孟珺遐 朱宁辉 《中国电机工程学报》 EI CSCD 北大核心 2010年第10期16-22,共7页
专家系统在应用方面的主要瓶颈是:规则库的维护;推理的速度和准确度的协调。分析了故障信息序列中必有或特有的信息,提出了基于特征挖掘的关联规则挖掘方法。结合电网故障信息的特征,改进了频繁模式(frequent pattern,FP)–算法:考虑了... 专家系统在应用方面的主要瓶颈是:规则库的维护;推理的速度和准确度的协调。分析了故障信息序列中必有或特有的信息,提出了基于特征挖掘的关联规则挖掘方法。结合电网故障信息的特征,改进了频繁模式(frequent pattern,FP)–算法:考虑了故障信息的特征,如时序和因果关联关系、故障性质、严重故障、稀有故障等因素;增加了规则的"或"逻辑;改进了FP-树的修剪技术。算例表明该算法能够大量减少无效挖掘,推理速度和准确度显著提高,适用于在线诊断。 展开更多
关键词 数据挖掘 关联规则 特征挖掘 频繁模式一算法 故障诊断 专家系统
下载PDF
快速更新频繁项集 被引量:63
16
作者 朱玉全 孙志挥 赵传申 《计算机研究与发展》 EI CSCD 北大核心 2003年第1期94-99,共6页
发现频繁项集是数据挖掘应用中的关键问题 ,发现过程的高花费要求对增量数据挖掘算法进行深入研究 首先分析并指出了增量式更新频繁项集算法的技术难点———寻找新的有效频繁项集 ;其次提出了一种快速的增量式更新频繁项集算法FUFIA ;
关键词 快速更新频繁项集 数据挖掘 关联规则 频繁项集 事务数据库
下载PDF
关联规则挖掘Apriori算法的研究与改进 被引量:119
17
作者 刘华婷 郭仁祥 姜浩 《计算机应用与软件》 CSCD 2009年第1期146-149,共4页
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有趣的关联。Apriori算法是关联规则挖掘中的经典算法。然而Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。对Apriori算法的原理及效率进行分析,... 关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有趣的关联。Apriori算法是关联规则挖掘中的经典算法。然而Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。对Apriori算法的原理及效率进行分析,指出了一些不足,并且提出了改进的Apriori_LB算法。该算法基于新的数据结构,改进了产生候选项集的连接方法。在详细阐述了Apriori_LB算法后,对Apriori算法和Apriori_LB算法进行了分析和比较,实验结果表明改进的Apriori_LB算法优于Apriori算法,特别是对最小支持度较小或者项数较少的事务数据库进行挖掘时,效果更加显著。 展开更多
关键词 数据挖掘 关联规则 频繁项集 APRIORI算法
下载PDF
基于布尔矩阵的关联规则算法研究 被引量:18
18
作者 方炜炜 杨炳儒 +1 位作者 宋威 侯伟 《计算机应用研究》 CSCD 北大核心 2008年第7期1964-1966,共3页
针对可快速在大型交易事务数据库中挖掘关联规则的问题,基于布尔矩阵提出一种新的挖掘算法。该算法通过仅需存储布尔位节约了内存,通过简单布尔运算提高了求解频繁项集的效率。实验证明该算法较之于Apriori算法有更好的性能。
关键词 数据挖掘 关联规则 矩阵 APRIORI算法 频繁项集
下载PDF
利用项集有序特性改进Apriori算法 被引量:11
19
作者 刘美玲 徐章艳 +3 位作者 卢景丽 区玉明 袁鼎荣 吴信东 《广西师范大学学报(自然科学版)》 CAS 2004年第1期33-37,共5页
Apriori算法是挖掘关联规则的一个经典算法,通过分析、研究该算法的基本思想,并利用项集的有序特性对其进行改进,减少了生成的候选集数量,从而提高算法的效率.
关键词 APRIORI算法 挖掘关联规则 非频繁项集 有序特性 数据挖掘
下载PDF
多段支持度数据挖掘算法研究 被引量:23
20
作者 李雄飞 苑森淼 +1 位作者 董立岩 全勃 《计算机学报》 EI CSCD 北大核心 2001年第6期661-665,共5页
在基于相联规则的数据挖掘算法中 ,Apriori等算法最为著名 .它分为两个主要步骤 :(1)通过多趟扫描数据库求解出频繁项集 ;(2 )利用频繁项集生成规则 .随后的许多算法都沿用 Apriori中“频繁项集的子集必为频繁项集”的思想 ,在频繁项集 ... 在基于相联规则的数据挖掘算法中 ,Apriori等算法最为著名 .它分为两个主要步骤 :(1)通过多趟扫描数据库求解出频繁项集 ;(2 )利用频繁项集生成规则 .随后的许多算法都沿用 Apriori中“频繁项集的子集必为频繁项集”的思想 ,在频繁项集 Lk- 1 上进行 JOIN运算构成潜在 k项集 Ck.由于数据库和 Ck 的规模较大 ,需要相当大的计算量才能生成频繁项集 .Apriori Tid算法给每个事务增加了一个唯一标识 Tid ,其特点是只扫描一趟数据库 ,其余趟扫描 (如第 k趟扫描 )均在相应的数据集 Ck上进行 .由于数据规模改变不大 ,各算法的效率差别并不明显 .该文提出分段计算支持度的思想 ,是把一个项集的支持度分段计算 ,每一个段记录该项集在相应规模事务中出现的频度 ,从而构成一个支持度向量 .由于有了项集的多段支持度 ,可以推测出该项集能否包含在更大规模的频繁项集中 ,采用这种算法既提高了在扫描数据库过程中的信息获取率 ,又能及时剔除超集不是频繁项集的项集 ,进一步缩减了潜在项集的规模 .在数据集扫描过程中 ,按文中定理 1的思想调整数据集 。 展开更多
关键词 数据挖掘 相联规则 算法 频繁项集 多段支持度 数据库
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部