This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alt...Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values.展开更多
Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheol...Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.展开更多
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ...In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.展开更多
An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propag...An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause.展开更多
In this paper, artificial neural networks are used for predicting single fiber efficiency in the process of removing smaller particles from gas stream by fiber filters. For this, numerical simulations are obtained of ...In this paper, artificial neural networks are used for predicting single fiber efficiency in the process of removing smaller particles from gas stream by fiber filters. For this, numerical simulations are obtained of a classic model of literature for fiber efficiency, which is numerically solved along with the convection diffusion equation in polar coordinates for particle concentration, with associated initial and boundary conditions. A sufficient number of examples from two numerical simulations are employed to construct a database, from which parameters of a novel neural model are adjusted. This model is constructed based on the back propagation algorithm in order to map two features, namely Peclet number and packing density, which are extracted from the numerical simulations into the corresponding single fiber efficiency. The results indicate that the developed neural model can be trained in a reasonable computational time and is capable of estimating single fiber efficiency from examples of the test set with a maximum error of 1.7%.展开更多
Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomef...Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomefamous due to its high tendency towards convergence to the global optimummost of the time. But, still the standard bat with random walk has a problemof getting stuck in local minima. In order to solve this problem, this researchproposed bat algorithm with levy flight random walk. Then, the proposedBat with Levy flight algorithm is further hybridized with three differentvariants of ANN. The proposed BatLFBP is applied to the problem ofinsulin DNA sequence classification of healthy homosapien. For classificationperformance, the proposed models such as Bat levy flight Artificial NeuralNetwork (BatLFANN) and Bat levy Flight Back Propagation (BatLFBP) arecompared with the other state-of-the-art algorithms like Bat Artificial NeuralNetwork (BatANN), Bat back propagation (BatBP), Bat Gaussian distribution Artificial Neural Network (BatGDANN). And Bat Gaussian distributionback propagation (BatGDBP), in-terms of means squared error (MSE) andaccuracy. From the perspective of simulations results, it is show that theproposed BatLFANN achieved 99.88153% accuracy with MSE of 0.001185,and BatLFBP achieved 99.834185 accuracy with MSE of 0.001658 on WL5.While on WL10 the proposed BatLFANN achieved 99.89899% accuracy withMSE of 0.00101, and BatLFBP achieved 99.84473% accuracy with MSE of0.004553. Similarly, on WL15 the proposed BatLFANN achieved 99.82853%accuracy with MSE of 0.001715, and BatLFBP achieved 99.3262% accuracywith MSE of 0.006738 which achieve better accuracy as compared to the otherhybrid models.展开更多
This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (...This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method.展开更多
A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are...A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly.展开更多
Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the p...Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals (EDCs). The artificial neural net-works (ANN) are capable of recognizing highly nonlinear relationships, so it will have a bright applica-tion prospect in building high-quality QSAR models. As a popular supervised training algorithm in ANN, back-propagation (BP) converges slowly and immerses in vibration frequently. In this paper, a research strategy that BP neural network was improved by conjugate gradient (CG) algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs. This re-sulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set, q2pred of 0.81 and root-mean-square error (RMSE) of 0.688 for the test set. The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds.展开更多
The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of ...The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.展开更多
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
基金the funding given by Council of Scientific and Industrial Research(CSIR)India through project NWP-31 for this project
文摘Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values.
基金the sponsor CSIR (Council of Scientific and Industrial Research), New Delhi for their financial grant to carry out the present research work
文摘Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.
文摘In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.
基金supported by the National Natural Science Foundation of China under Grant No. 40774087
文摘An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause.
文摘In this paper, artificial neural networks are used for predicting single fiber efficiency in the process of removing smaller particles from gas stream by fiber filters. For this, numerical simulations are obtained of a classic model of literature for fiber efficiency, which is numerically solved along with the convection diffusion equation in polar coordinates for particle concentration, with associated initial and boundary conditions. A sufficient number of examples from two numerical simulations are employed to construct a database, from which parameters of a novel neural model are adjusted. This model is constructed based on the back propagation algorithm in order to map two features, namely Peclet number and packing density, which are extracted from the numerical simulations into the corresponding single fiber efficiency. The results indicate that the developed neural model can be trained in a reasonable computational time and is capable of estimating single fiber efficiency from examples of the test set with a maximum error of 1.7%.
基金This research is supported by Tier-1 Research Grant, vote no. H938 by ResearchManagement Office (RMC), Universiti Tun Hussein Onn Malaysia and Ministry of Higher Education,Malaysia.
文摘Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomefamous due to its high tendency towards convergence to the global optimummost of the time. But, still the standard bat with random walk has a problemof getting stuck in local minima. In order to solve this problem, this researchproposed bat algorithm with levy flight random walk. Then, the proposedBat with Levy flight algorithm is further hybridized with three differentvariants of ANN. The proposed BatLFBP is applied to the problem ofinsulin DNA sequence classification of healthy homosapien. For classificationperformance, the proposed models such as Bat levy flight Artificial NeuralNetwork (BatLFANN) and Bat levy Flight Back Propagation (BatLFBP) arecompared with the other state-of-the-art algorithms like Bat Artificial NeuralNetwork (BatANN), Bat back propagation (BatBP), Bat Gaussian distribution Artificial Neural Network (BatGDANN). And Bat Gaussian distributionback propagation (BatGDBP), in-terms of means squared error (MSE) andaccuracy. From the perspective of simulations results, it is show that theproposed BatLFANN achieved 99.88153% accuracy with MSE of 0.001185,and BatLFBP achieved 99.834185 accuracy with MSE of 0.001658 on WL5.While on WL10 the proposed BatLFANN achieved 99.89899% accuracy withMSE of 0.00101, and BatLFBP achieved 99.84473% accuracy with MSE of0.004553. Similarly, on WL15 the proposed BatLFANN achieved 99.82853%accuracy with MSE of 0.001715, and BatLFBP achieved 99.3262% accuracywith MSE of 0.006738 which achieve better accuracy as compared to the otherhybrid models.
文摘This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method.
基金Supported by the National Natural Science Foundation of China (No.60572100)by the Royal Society (U.K.) International Joint Projects 2006/R3-Cost Share with NSFC (No.60711130233)
文摘A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly.
基金the National Natural Science Foundation of China (Grant No. 20507008)the National Natural Science Foundation Key Project of China (Grant No. 20737001)+1 种基金the Natural Science Foundation of Jiangsu Province,China (Grant No. BK200418)the National Basic Research Program of China (973 Program) (Grant No. 2003CB415002)
文摘Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals (EDCs). The artificial neural net-works (ANN) are capable of recognizing highly nonlinear relationships, so it will have a bright applica-tion prospect in building high-quality QSAR models. As a popular supervised training algorithm in ANN, back-propagation (BP) converges slowly and immerses in vibration frequently. In this paper, a research strategy that BP neural network was improved by conjugate gradient (CG) algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs. This re-sulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set, q2pred of 0.81 and root-mean-square error (RMSE) of 0.688 for the test set. The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds.
文摘The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.