期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
1
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 artificial neural network Genetic algorithms Back propagation model (BP model) OPTIMIZATION
下载PDF
Artificial neural network approach to assess selective flocculation on hematite and kaolinite 被引量:2
2
作者 Lopamudra Panda P.K.Banerjee +2 位作者 Surendra Kumar Biswal R.Venugopal N.R.Mandre 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第7期637-646,共10页
Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alt... Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values. 展开更多
关键词 HEMATITE KAOLINITE FLOCCULATION artificial neural networks back propagation algorithm Fourier transform infrared spectroscopy separation efficiency
下载PDF
Artificial neural network approach for rheological characteristics of coal-water slurry using microwave pre-treatment 被引量:3
3
作者 B.K.Sahoo S.De B.C.Meikap 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期379-386,共8页
Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheol... Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model. 展开更多
关键词 Microwave pre-treatment Coal-water slurry Apparent viscosity artificial neural network Back propagation algorithm
下载PDF
Performance prediction of gravity concentrator by using artificial neural network-a case study 被引量:3
4
作者 Panda Lopamudra Tripathy Sunil Kumar 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期461-465,共5页
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ... In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values. 展开更多
关键词 Chromite artificial neural network Wet shaking table Performance prediction Back propagation algorithm
下载PDF
Applying Artificial Neural Networks to Modeling the Middle Atmosphere 被引量:2
5
作者 肖存英 胡雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期883-890,共8页
An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propag... An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause. 展开更多
关键词 artificial neural network middle atmosphere MODELING back-propagation algorithm NRLMSISE- 00 model
下载PDF
Predicting of the Fibrous Filters Efficiency for the Removal Particles from Gas Stream by Artificial Neural Network
6
作者 érica Regina Filletti Juliana Maria da Silva Valdemir Garcia Ferreira 《Advances in Chemical Engineering and Science》 2015年第3期317-327,共11页
In this paper, artificial neural networks are used for predicting single fiber efficiency in the process of removing smaller particles from gas stream by fiber filters. For this, numerical simulations are obtained of ... In this paper, artificial neural networks are used for predicting single fiber efficiency in the process of removing smaller particles from gas stream by fiber filters. For this, numerical simulations are obtained of a classic model of literature for fiber efficiency, which is numerically solved along with the convection diffusion equation in polar coordinates for particle concentration, with associated initial and boundary conditions. A sufficient number of examples from two numerical simulations are employed to construct a database, from which parameters of a novel neural model are adjusted. This model is constructed based on the back propagation algorithm in order to map two features, namely Peclet number and packing density, which are extracted from the numerical simulations into the corresponding single fiber efficiency. The results indicate that the developed neural model can be trained in a reasonable computational time and is capable of estimating single fiber efficiency from examples of the test set with a maximum error of 1.7%. 展开更多
关键词 artificial neural network BACK propagation algorithm Fiber FILTERS Particle CAPTURE
下载PDF
An Optimized Neural Network with Bat Algorithm for DNA Sequence Classification 被引量:1
7
作者 Muhammad Zubair Rehman Muhammad Aamir +3 位作者 Nazri Mohd.Nawi Abdullah Khan Saima Anwar Lashari Siyab Khan 《Computers, Materials & Continua》 SCIE EI 2022年第10期493-511,共19页
Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomef... Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomefamous due to its high tendency towards convergence to the global optimummost of the time. But, still the standard bat with random walk has a problemof getting stuck in local minima. In order to solve this problem, this researchproposed bat algorithm with levy flight random walk. Then, the proposedBat with Levy flight algorithm is further hybridized with three differentvariants of ANN. The proposed BatLFBP is applied to the problem ofinsulin DNA sequence classification of healthy homosapien. For classificationperformance, the proposed models such as Bat levy flight Artificial NeuralNetwork (BatLFANN) and Bat levy Flight Back Propagation (BatLFBP) arecompared with the other state-of-the-art algorithms like Bat Artificial NeuralNetwork (BatANN), Bat back propagation (BatBP), Bat Gaussian distribution Artificial Neural Network (BatGDANN). And Bat Gaussian distributionback propagation (BatGDBP), in-terms of means squared error (MSE) andaccuracy. From the perspective of simulations results, it is show that theproposed BatLFANN achieved 99.88153% accuracy with MSE of 0.001185,and BatLFBP achieved 99.834185 accuracy with MSE of 0.001658 on WL5.While on WL10 the proposed BatLFANN achieved 99.89899% accuracy withMSE of 0.00101, and BatLFBP achieved 99.84473% accuracy with MSE of0.004553. Similarly, on WL15 the proposed BatLFANN achieved 99.82853%accuracy with MSE of 0.001715, and BatLFBP achieved 99.3262% accuracywith MSE of 0.006738 which achieve better accuracy as compared to the otherhybrid models. 展开更多
关键词 DNA sequence classification bat algorithm levy flight back propagation neural network hybrid artificial neural networks(HANN)
下载PDF
A Review of an Expert System Design for Crude Oil Distillation Column Using the Neural Networks Model and Process Optimization and Control Using Genetic Algorithm Framework 被引量:1
8
作者 Lekan Taofeek Popoola Gutti Babagana Alfred Akpoveta Susu 《Advances in Chemical Engineering and Science》 2013年第2期164-170,共7页
This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (... This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method. 展开更多
关键词 artificial neural network CRUDE Oil Distillation Column Genetic algorithm FRAMEWORK Sigmoidal Transfer Function BACK-propagation algorithm
下载PDF
BFA BASED NEURAL NETWORK FOR IMAGE COMPRESSION 被引量:4
9
作者 Chu Ying Mi Hua +2 位作者 Ji Zhen Shao Zibo Q. H. Wu 《Journal of Electronics(China)》 2008年第3期405-408,共4页
A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are... A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly. 展开更多
关键词 Bacterial Foraging algorithm (BFA) artificial neural network (ANN) Back propagation(BP) Image compression
下载PDF
罗汉果籽吸附氟离子效果的不同预测模型研究
10
作者 邓忠惠 谢微 《食品安全质量检测学报》 CAS 2024年第6期246-255,共10页
目的建立不同罗汉果籽吸附氟离子预测模型。方法以吸附量为评价指标,筛选影响吸附效果的因素。在单因素的基础上,通过响应面法(response surface methodology,RSM)优化吸附温度、接触时间、吸附剂投加量、氟离子初始质量浓度和溶液pH。... 目的建立不同罗汉果籽吸附氟离子预测模型。方法以吸附量为评价指标,筛选影响吸附效果的因素。在单因素的基础上,通过响应面法(response surface methodology,RSM)优化吸附温度、接触时间、吸附剂投加量、氟离子初始质量浓度和溶液pH。以吸附温度、接触时间、吸附剂投加量、氟离子初始质量浓度和溶液pH作为输入参数构建基于反向传播人工神经网络(back propagation artificial neural network,BP-ANN)的吸附量预测模型。根据模型在预测集上的表现确定具体的输入参数,将优化隐含层神经元数的BP-ANN与其他学习模型[遗传算法(genetic algorithm,GA)]优化的模型对比。结果通过两种模型的决定系数(coefficient of determination,R^(2))、平均绝对误差(mean absolute error,MAE)、均方误差(mean square error,MSE)、均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)值比较,得出GA-BP-ANN预测模型(R^(2)=0.92594)的预测效果较优于BP-ANN(R^(2)=0.88498)。结论相较于BP-ANN预测模型,经过优化后的GA-BP-ANN预测模型对吸附量的预测精度更高。GA-BP-ANN预测模型可为罗汉果籽吸附氟离子效果提供技术参考,去除水中氟离子效果较好。 展开更多
关键词 罗汉果籽 反向传播人工神经网络 遗传算法 氟离子 预测模型 响应面
下载PDF
基于人工神经网络的沿海地区底泥盐度计算模型
11
作者 袁静 王锐 喻国良 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第4期102-108,共7页
底泥盐度与海洋科学、河口研究、环境管理等密切相关,现有的底泥盐度计算公式存在精度不足、适用性有限等问题。为此,开展了271组室内试验和10组户外试验,整合了其他学者的研究数据,以底泥电导率、泥沙浓度、温度和细颗粒表面系数为模... 底泥盐度与海洋科学、河口研究、环境管理等密切相关,现有的底泥盐度计算公式存在精度不足、适用性有限等问题。为此,开展了271组室内试验和10组户外试验,整合了其他学者的研究数据,以底泥电导率、泥沙浓度、温度和细颗粒表面系数为模型输入变量,分别建立了用于计算沿海地区底泥盐度的反向传播人工神经网络(BP-ANN)模型、粒子群优化的反向传播人工神经网络(PSO-BP-ANN)模型、结合遗传算法的反向传播人工神经网络(GA-BP-ANN)模型。与现有的底泥盐度计算公式相比,新建模型的精度更高,可为沿海地区底泥盐度的确定提供更多可供选择的预测方法。 展开更多
关键词 底泥盐度 人工神经网络模型 反向传播 粒子群优化 遗传算法
下载PDF
多特征反向传播-人工神经网络微钻阻力年轮识别方法
12
作者 姚建峰 吴振洋 +4 位作者 胡雪凡 孙艳歌 田文静 路一曼 李晓 《信阳师范学院学报(自然科学版)》 CAS 2024年第4期460-469,共10页
峰谷年轮识别算法仅使用峰谷差值这一个特征进行年轮识别,因此该算法的误判率和漏判率较高。为了进一步提高微钻阻力年轮识别精度,提出了一种基于多个波峰特征的反向传播-人工神经网络(BP-ANN)年轮识别方法。首先使用峰谷年轮算法识别... 峰谷年轮识别算法仅使用峰谷差值这一个特征进行年轮识别,因此该算法的误判率和漏判率较高。为了进一步提高微钻阻力年轮识别精度,提出了一种基于多个波峰特征的反向传播-人工神经网络(BP-ANN)年轮识别方法。首先使用峰谷年轮算法识别有效波峰,然后使用波峰阻力值、波峰与前波谷和后波谷的阻力差值、波峰与前波谷和后波谷的距离、前波谷与后波谷的距离等6个参数描述波峰特征;然后根据阻力图与圆盘图像确定有效波峰的类型,如果该波峰是一个年轮信号,则标记为“1”,否则标记为“0”;最后使用BP-ANN算法构建有效波峰分类模型。结果显示,BP-ANN模型的准确率比峰谷年轮识别算法提高了1.26个百分点,误判率和漏判率比峰谷年轮识别算法分别减少了1.06和1.38个百分点。结果表明:基于多个波峰特征的BP-ANN模型的年轮识别方法可行;与传统的峰谷年轮识别算法相比,该方法可有效提高年轮识别精度,有效降低年轮误判率和漏判率. 展开更多
关键词 反向传播-人工神经网络(BP-ANN) 微钻阻力仪 峰谷年轮识别算法 年轮
下载PDF
人工神经网络在电力营销系统中的应用与实现
13
作者 方晓萌 章玉 +2 位作者 赵夏楠 巩莹 刘豪 《科技创新与应用》 2024年第13期167-170,共4页
在电力行业信息化发展背景下,收集与存储大量电力数据,可为电力企业营销决策制定提供依据。该文提出采用人工神经网络构建电力营销系统BP神经网络模型,通过智能决策树分类算法预处理模型数据,得到最优化的模型数据,并改进神经网络隐含... 在电力行业信息化发展背景下,收集与存储大量电力数据,可为电力企业营销决策制定提供依据。该文提出采用人工神经网络构建电力营销系统BP神经网络模型,通过智能决策树分类算法预处理模型数据,得到最优化的模型数据,并改进神经网络隐含层节点数目算法,结合应用分时段预测方法及共轭梯度算法分别进行网络训练及网络结构优化,为网络收敛速度加快提供保障,得出相对准确的电力营销年度电量预测结论,说明电力营销系统中人工神经网络具有较高的应用价值。 展开更多
关键词 人工神经网络 电力营销 误差反向传播模型 BP神经网络模型 决策树分类算法
下载PDF
Back-propagation network improved by conjugate gradient based on genetic algorithm in QSAR study on endocrine disrupting chemicals 被引量:7
14
作者 JI Li WANG XiaoDong +2 位作者 YANG XuShu LIU ShuShen WANG LianSheng 《Chinese Science Bulletin》 SCIE EI CAS 2008年第1期33-39,共7页
Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the p... Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals (EDCs). The artificial neural net-works (ANN) are capable of recognizing highly nonlinear relationships, so it will have a bright applica-tion prospect in building high-quality QSAR models. As a popular supervised training algorithm in ANN, back-propagation (BP) converges slowly and immerses in vibration frequently. In this paper, a research strategy that BP neural network was improved by conjugate gradient (CG) algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs. This re-sulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set, q2pred of 0.81 and root-mean-square error (RMSE) of 0.688 for the test set. The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds. 展开更多
关键词 化学药物 内分泌 人造神经网络 遗传算法
原文传递
Groundwater Level Predictions Using Artificial Neural Networks 被引量:2
15
作者 毛晓敏 尚松浩 刘翔 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第6期574-579,共6页
The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of ... The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future. 展开更多
关键词 groundwater level prediction artificial neural networks back-propagation algorithm auto-correlation analysis
原文传递
曲面分段全建造流程的误差累积及精度预测 被引量:1
16
作者 王江超 陈相飞 +3 位作者 牛业兴 杜仕忠 孙昊 赵宏权 《船舶与海洋工程》 2023年第6期1-8,16,共9页
以海洋平台典型曲面分段为研究对象,梳理建造企业对切割和弯曲工艺的精度要求及误差响应,以及焊接工艺对应的典型接头力学载荷,并将其作为曲面分段建造的源头误差。基于弹性有限元方法,分析焊接工艺对曲面分段建造精度的影响;考虑切割... 以海洋平台典型曲面分段为研究对象,梳理建造企业对切割和弯曲工艺的精度要求及误差响应,以及焊接工艺对应的典型接头力学载荷,并将其作为曲面分段建造的源头误差。基于弹性有限元方法,分析焊接工艺对曲面分段建造精度的影响;考虑切割和弯曲误差对焊接工艺的影响,并预测闭合加工误差的焊接工艺及其产生的焊接变形。为提升曲面分段建造精度的评估效率,建立基于遗传算法的BP(Back Propagation)人工神经网络,并以27组数据为训练样本,以9组数据为验证样本检验其预测的准确性。通过弹性有限元分析研究不考虑、保留及矫正切割和弯曲加工误差等3种情况下的曲面分段建造精度,结果发现三者存在明显差异。考虑切割、弯曲的加工误差及其焊接闭合工艺对曲面分段的建造精度的显著影响,基于遗传算法的BP人工神经网络具有极高的预测精度和稳定性。 展开更多
关键词 曲面分段 建造工艺误差 焊接固有变形 加工误差矫正 遗传算法 BP人工神经网络
下载PDF
人工神经网络对NaNbO_(3)基陶瓷介电性能的预测研究
17
作者 周毅 王嘉璇 米忠华 《中国陶瓷》 CAS CSCD 北大核心 2023年第11期39-45,共7页
NaNbO_(3)基陶瓷在电介质储能领域具有极大的应用潜力。研究在对NaNbO_(3)基复合陶瓷材料开展实验研究的基础上,基于人工神经网络方法构建BP神经网络与优化的GA-BP神经网络模型,以磷酸盐玻璃相的添加量、烧结温度、烧结时间作为输入,介... NaNbO_(3)基陶瓷在电介质储能领域具有极大的应用潜力。研究在对NaNbO_(3)基复合陶瓷材料开展实验研究的基础上,基于人工神经网络方法构建BP神经网络与优化的GA-BP神经网络模型,以磷酸盐玻璃相的添加量、烧结温度、烧结时间作为输入,介电性能(介电常数与介电损耗)作为输出,对NaNbO3基复合陶瓷材料的介电性能开展预测研究。结果表明,通过GA-BP网络预测的介电常数相对误差最大仅为1.03%,介电损耗预测结果最大值仅为-3.18%,完全符合应用需求。 展开更多
关键词 人工神经网络 反向传播 遗传算法 介电性能 模型优化
下载PDF
遗传算法误差反向传播人工神经网络预测阿立哌唑血药浓度
18
作者 杨泽萍 赵婷 +5 位作者 王婷婷 冯杰 张惠兰 孙力 李红健 于鲁海 《中国药师》 CAS 2023年第10期59-66,共8页
目的构建基于遗传算法误差反向传播(GA-BP)人工神经网络的阿立哌唑(APZ)及其代谢产物脱氢阿立哌唑(DAPZ)血药浓度预测模型,为需要调整APZ使用剂量或不能进行APZ血药浓度监测的患者提供浓度预测模型。方法回顾性收集在2021年7月—2022年... 目的构建基于遗传算法误差反向传播(GA-BP)人工神经网络的阿立哌唑(APZ)及其代谢产物脱氢阿立哌唑(DAPZ)血药浓度预测模型,为需要调整APZ使用剂量或不能进行APZ血药浓度监测的患者提供浓度预测模型。方法回顾性收集在2021年7月—2022年8月新疆维吾尔自治区人民医院就诊且规律服用APZ的174例患者的血药浓度资料,提取相关变量,采用Matlab R2018a编程软件,结合深度学习网络构建GA-BP人工神经网络预测模型,预测APZ+DAPZ血药浓度。结果GA-BP人工神经网络预测模型验证结果显示,35例验证组样本的预测结果与实测结果相比,平均预测误差为-0.0926,平均绝对误差为0.6895,35个预测误差均小于15%,小于15%的概率为100%,血药浓度的预测值与实测值之间的相关系数为0.997,预测结果较理想。结论GA-BP人工神经网络预测模型预测APZ+DAPZ血药浓度,可用于APZ的个体化给药。 展开更多
关键词 遗传算法误差反向传播 人工神经网络 阿立哌唑 脱氢阿立哌唑 血药浓度预测
下载PDF
互学习神经网络训练方法研究 被引量:31
19
作者 刘威 刘尚 +2 位作者 白润才 周璇 周定宁 《计算机学报》 EI CSCD 北大核心 2017年第6期1291-1308,共18页
由于BP神经网络具有表达能力强,模型简单等特点,经过近30年的发展,在理论和应用研究上都取得了巨大的进步,然而容易陷入局部最优和泛化能力差等问题却限制了神经网络的发展.同时,大数据的出现和深度学习算法的提出与应用,为神经网络向... 由于BP神经网络具有表达能力强,模型简单等特点,经过近30年的发展,在理论和应用研究上都取得了巨大的进步,然而容易陷入局部最优和泛化能力差等问题却限制了神经网络的发展.同时,大数据的出现和深度学习算法的提出与应用,为神经网络向更类脑的方向发展提出了新的要求.针对上述问题,该文从模拟生物双向认知能力的角度出发,构造了一种新的神经网络模型——互学习神经网络模型,该模型在标准正向神经网络的基础上,引入了与其具有结构对称性的负向神经网络,利用正、负向神经网络分别模拟生物的顺向和逆向认知过程,并在此基础上提出了一种新的神经网络训练方法——互学习神经网络训练方法,该方法通过网络连接权值转置共享,正、负双向交替训练的方式对互学习神经网络模型进行训练,从而实现输入数据和输出标签之间的相互学习,使网络具有双向认知能力.实验表明,互学习神经网络训练方法可以同时训练正、负两个神经网络,并使网络收敛.同时,在此基础上提出了"互学习预训练+标准正向训练"的两阶段学习策略和相应的转换学习方法,这种转换学习方法起到了和"无监督预训练+监督微调"相同的效果,能够使网络训练效果更好,是一种快速、稳定、泛化能力强的新型神经网络学习方法. 展开更多
关键词 神经网络 互学习 权值共享 BP算法 双向认知 分类识别 人工智能
下载PDF
基于BP神经网络的荧光光谱法农药残留检测 被引量:14
20
作者 王雷 乔晓艳 +2 位作者 张姝 赵法刚 董有尔 《应用光学》 CAS CSCD 北大核心 2010年第3期442-446,共5页
针对目前农药残留难以实现快速准确检测的问题,利用人工神经网络方法对啶虫脒农药残留测量中的荧光混合光谱进行分离,设计了能够快速检测固体表面啶虫脒农药残留量的荧光光谱测量系统。根据反向传播算法,应用三层人工神经网络原理,对荧... 针对目前农药残留难以实现快速准确检测的问题,利用人工神经网络方法对啶虫脒农药残留测量中的荧光混合光谱进行分离,设计了能够快速检测固体表面啶虫脒农药残留量的荧光光谱测量系统。根据反向传播算法,应用三层人工神经网络原理,对荧光光谱严重重叠的啶虫脒和滤纸混合体系进行啶虫脒残留量检测。在340nm~400nm范围内,以20个特征波长处荧光强度值作为网络特征参数,经网络训练和测试,啶虫脒浓度为40mg/kg和90mg/kg的回收率分别为102%和97%,测定结果相对标准偏差分别为1.4%和1.9%。实验结果表明,BP神经网络辅助荧光光谱法测定滤纸上啶虫脒农药残留,具有网络训练速度快、检测周期短、测量精度高等特点。 展开更多
关键词 人工神经网络 荧光光谱法 BP算法 啶虫脒
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部