Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is desi...Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.展开更多
This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the ...This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the user’s key, then uses the chaotic mapping to get the chaotic sequence and inserts the sequence into the LSBs of the image blocks to get the watermarked image blocks. The paper reconstructed the watermarked image from all the embedded blocks. The analysis and experimental results show that the scheme is pretty fragile to tampering, and it can localize the tampering position accurately, reach 3×3 blocks.展开更多
In order to protect copyright of digital images,a new robust digital image watermarking algorithm based on chaotic system and QR factorization was proposed.The host images were firstly divided into blocks with same si...In order to protect copyright of digital images,a new robust digital image watermarking algorithm based on chaotic system and QR factorization was proposed.The host images were firstly divided into blocks with same size,then QR factorization was performed on each block.Pseudorandom circular chain(PCC) generated by logistic mapping(LM) was applied to select the embedding blocks for enhancing the security of the scheme.The first column coefficients in Q matrix of chosen blocks were modified to embed watermarks without causing noticeable artifacts.Watermark extraction procedure was performed without the original cover image.The experimental results demonstrate that the watermarked images have good visual quality and this scheme is better than the existing techniques,especially when the image is attacked by cropping,noise pollution and so on.Analysis and discussion on robustness and security issues were also presented.展开更多
This paper proposed a novel blind robust watermarking scheme. Multi-bits watermark is embedded in the chaotic mixed image blocks. Energy of the watermark is spread to all region of the blocks instead of some individua...This paper proposed a novel blind robust watermarking scheme. Multi-bits watermark is embedded in the chaotic mixed image blocks. Energy of the watermark is spread to all region of the blocks instead of some individual pixels, which entitles the watermark with imperceptibility and high robustness. A class of 1-D Markov chaotic maps is employed to perform image block mixing and watermark encryption ensures security of the system. To prove the validity of this proposed scheme, some objective comparisons with the popular spread spectrum scheme were also presented. The simulation results show that this scheme can survive processing such as high-ratio JPEG compression, Gaussian noise pollution and histogram equalization.展开更多
In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for med...In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.展开更多
In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firs...In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc.展开更多
Taking full advantage of the randomicity of chaotic system and its extreme sensitivity to the initial value, a new chaotic fragile watermarking algorithm is proposed. In the algorithm, the location key is looked as a ...Taking full advantage of the randomicity of chaotic system and its extreme sensitivity to the initial value, a new chaotic fragile watermarking algorithm is proposed. In the algorithm, the location key is looked as a logistic chaotic initial value for iteration to create a location matrix. According to this location matrix, a mapping image is generated and the embedding location of watermarking in image blocks is identified. Then, the watermarking sequence, which is related with the mapping image blocks and generated by H6non chaotic map, is embedded into the least significant bit ( LSB ) of the corresponding location in each block. Since the image content and watermarking are staggered, the algorithm has a higher security. Simulation results showed that the algorithm can detect and locate the tamper in watermarked images with an accuracy of 2 × 2 block pixels. At the same time, the watermarking images has good invisibility, and the original image is not required when extracting watermarking.展开更多
Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images ha...Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.展开更多
For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the...For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit metho...Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit methods exist for accurately embedding ownership or copyright information in video data,the nascent NeRV framework has yet to address this issue comprehensively.In response,this paper introduces MarkINeRV,a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV,which models the embedding and extraction of watermarks as a pair of inverse processes of a reversible network and employs the same network to achieve embedding and extraction of watermarks.It is just that the information flow is in the opposite direction.Additionally,a video frame quality enhancement module is incorporated to mitigate watermarking information losses in the rendering process and the possibility ofmalicious attacks during transmission,ensuring the accurate extraction of watermarking information through the invertible network’s inverse process.This paper evaluates the accuracy,robustness,and invisibility of MarkINeRV through multiple video datasets.The results demonstrate its efficacy in extracting watermarking information for copyright protection of NeRV.MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV.展开更多
This paper presents a novel watermarking scheme designed to address the copyright protection challenges encountered with Neural radiation field(NeRF)models.We employ an embedding network to integrate the watermark int...This paper presents a novel watermarking scheme designed to address the copyright protection challenges encountered with Neural radiation field(NeRF)models.We employ an embedding network to integrate the watermark into the images within the training set.Then,theNeRFmodel is utilized for 3Dmodeling.For copyright verification,a secret image is generated by inputting a confidential viewpoint into NeRF.On this basis,design an extraction network to extract embedded watermark images fromconfidential viewpoints.In the event of suspicion regarding the unauthorized usage of NeRF in a black-box scenario,the verifier can extract the watermark from the confidential viewpoint to authenticate the model’s copyright.The experimental results demonstrate not only the production of visually appealing watermarks but also robust resistance against various types of noise attacks,thereby substantiating the effectiveness of our approach in safeguarding NeRF.展开更多
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti...This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.展开更多
This paper addresses the preassigned-time chaos control problem of memristor chaotic systems with time delays.Since the introduction of memristor,the presented models are nonlinear systems with chaotic dynamics.First,...This paper addresses the preassigned-time chaos control problem of memristor chaotic systems with time delays.Since the introduction of memristor,the presented models are nonlinear systems with chaotic dynamics.First,the TS fuzzy method is adopted to describe the chaotic systems.Then,a sliding-model-based control approach is proposed to achieve the preassigned-time stabilization of the presented models,where the upper bound of stabilization time can be arbitrarily specified in advance.Finally,simulation results demonstrate the validity of presented control approach and theoretic results.展开更多
With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In t...With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.展开更多
As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge...As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge,this paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural network watermarking.Leveraging 2D image watermarking technology for 3D scene protection,the scheme embeds watermarks within the training images of neural radiance fields through the forward process in invertible neural networks and extracts them from images rendered by neural radiance fields through the reverse process,thereby ensuring copyright protection for both the neural radiance fields and associated 3D scenes.However,challenges such as information loss during rendering processes and deliberate tampering necessitate the design of an image quality enhancement module to increase the scheme’s robustness.This module restores distorted images through neural network processing before watermark extraction.Additionally,embedding watermarks in each training image enables watermark information extraction from multiple viewpoints.Our proposed watermarking method achieves a PSNR(Peak Signal-to-Noise Ratio)value exceeding 37 dB for images containing watermarks and 22 dB for recovered watermarked images,as evaluated on the Lego,Hotdog,and Chair datasets,respectively.These results demonstrate the efficacy of our scheme in enhancing copyright protection.展开更多
Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4))...Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.展开更多
Owing to the rapid increase in the interchange of text information through internet networks,the reliability and security of digital content are becoming a major research problem.Tampering detection,Content authentica...Owing to the rapid increase in the interchange of text information through internet networks,the reliability and security of digital content are becoming a major research problem.Tampering detection,Content authentication,and integrity verification of digital content interchanged through the Internet were utilized to solve a major concern in information and communication technologies.The authors’difficulties were tampering detection,authentication,and integrity verification of the digital contents.This study develops an Automated Data Mining based Digital Text Document Watermarking for Tampering Attack Detection(ADMDTW-TAD)via the Internet.The DM concept is exploited in the presented ADMDTW-TAD technique to identify the document’s appropriate characteristics to embed larger watermark information.The presented secure watermarking scheme intends to transmit digital text documents over the Internet securely.Once the watermark is embedded with no damage to the original document,it is then shared with the destination.The watermark extraction process is performed to get the original document securely.The experimental validation of the ADMDTW-TAD technique is carried out under varying levels of attack volumes,and the outcomes were inspected in terms of different measures.The simulation values indicated that the ADMDTW-TAD technique improved performance over other models.展开更多
Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all whil...Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)the Natural Science Foundation of Liaoning province of China(Grant No.2020-MS-274).
文摘Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.
文摘This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the user’s key, then uses the chaotic mapping to get the chaotic sequence and inserts the sequence into the LSBs of the image blocks to get the watermarked image blocks. The paper reconstructed the watermarked image from all the embedded blocks. The analysis and experimental results show that the scheme is pretty fragile to tampering, and it can localize the tampering position accurately, reach 3×3 blocks.
基金Project(2007AA01Z241-2) supported by the National High-tech Research and Development Program of ChinaProject(2006XM002) supported by Beijing Jiaotong University Science Foundation,ChinaProject(0910KYZY55) supported by the Fundamental Research Funds for the Central University in China
文摘In order to protect copyright of digital images,a new robust digital image watermarking algorithm based on chaotic system and QR factorization was proposed.The host images were firstly divided into blocks with same size,then QR factorization was performed on each block.Pseudorandom circular chain(PCC) generated by logistic mapping(LM) was applied to select the embedding blocks for enhancing the security of the scheme.The first column coefficients in Q matrix of chosen blocks were modified to embed watermarks without causing noticeable artifacts.Watermark extraction procedure was performed without the original cover image.The experimental results demonstrate that the watermarked images have good visual quality and this scheme is better than the existing techniques,especially when the image is attacked by cropping,noise pollution and so on.Analysis and discussion on robustness and security issues were also presented.
基金Natural Science Foundation of China( No.60 2 72 0 82 ) and Hi-Tech R&D Program of China ( No.2 0 0 2 AA14 4110
文摘This paper proposed a novel blind robust watermarking scheme. Multi-bits watermark is embedded in the chaotic mixed image blocks. Energy of the watermark is spread to all region of the blocks instead of some individual pixels, which entitles the watermark with imperceptibility and high robustness. A class of 1-D Markov chaotic maps is employed to perform image block mixing and watermark encryption ensures security of the system. To prove the validity of this proposed scheme, some objective comparisons with the popular spread spectrum scheme were also presented. The simulation results show that this scheme can survive processing such as high-ratio JPEG compression, Gaussian noise pollution and histogram equalization.
基金supported by the Key Research Project of Hainan Province[ZDYF2018129]the Higher Education Research Project of Hainan Province(Hnky2019-73)+3 种基金the National Natural Science Foundation of China[61762033]the Natural Science Foundation of Hainan[617175]the Special Scientific Research Project of Philosophy and Social Sciences of Chongqing Medical University[201703]the Key Research Project of Haikou College of Economics[HJKZ18-01].
文摘In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.
基金Project supported by the Open Research Fund of Chongqing Key Laboratory of Emergency Communications,China(Grant No.CQKLEC,20140504)the National Natural Science Foundation of China(Grant Nos.61173178,61302161,and 61472464)the Fundamental Research Funds for the Central Universities,China(Grant Nos.106112013CDJZR180005 and 106112014CDJZR185501)
文摘In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc.
基金The National Science Foundation of China (NSFC) (No.60702025)the Research Fund for the Doctoral Program of Higher Education (RFDP)( No.20070613024)+1 种基金Sichuan Youth Science & Technology Foundation of China (No. 07ZQ026-004)Southwest Jiaotong University Development Foundation (No.2006A04)
文摘Taking full advantage of the randomicity of chaotic system and its extreme sensitivity to the initial value, a new chaotic fragile watermarking algorithm is proposed. In the algorithm, the location key is looked as a logistic chaotic initial value for iteration to create a location matrix. According to this location matrix, a mapping image is generated and the embedding location of watermarking in image blocks is identified. Then, the watermarking sequence, which is related with the mapping image blocks and generated by H6non chaotic map, is embedded into the least significant bit ( LSB ) of the corresponding location in each block. Since the image content and watermarking are staggered, the algorithm has a higher security. Simulation results showed that the algorithm can detect and locate the tamper in watermarked images with an accuracy of 2 × 2 block pixels. At the same time, the watermarking images has good invisibility, and the original image is not required when extracting watermarking.
基金the China Postdoctoral Science Foundation under Grant 2021M701838the Natural Science Foundation of Hainan Province of China under Grants 621MS042 and 622MS067the Hainan Medical University Teaching Achievement Award Cultivation under Grant HYjcpx202209.
文摘Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)。
文摘For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.
基金supported by the National Natural Science Foundation of China,with Fund Numbers 62272478,62102451the National Defense Science and Technology Independent Research Project(Intelligent Information Hiding Technology and Its Applications in a Certain Field)and Science and Technology Innovation Team Innovative Research Project“Research on Key Technologies for Intelligent Information Hiding”with Fund Number ZZKY20222102.
文摘Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit methods exist for accurately embedding ownership or copyright information in video data,the nascent NeRV framework has yet to address this issue comprehensively.In response,this paper introduces MarkINeRV,a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV,which models the embedding and extraction of watermarks as a pair of inverse processes of a reversible network and employs the same network to achieve embedding and extraction of watermarks.It is just that the information flow is in the opposite direction.Additionally,a video frame quality enhancement module is incorporated to mitigate watermarking information losses in the rendering process and the possibility ofmalicious attacks during transmission,ensuring the accurate extraction of watermarking information through the invertible network’s inverse process.This paper evaluates the accuracy,robustness,and invisibility of MarkINeRV through multiple video datasets.The results demonstrate its efficacy in extracting watermarking information for copyright protection of NeRV.MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV.
基金supported by the National Natural Science Foundation of China,with Fund Number 62272478.
文摘This paper presents a novel watermarking scheme designed to address the copyright protection challenges encountered with Neural radiation field(NeRF)models.We employ an embedding network to integrate the watermark into the images within the training set.Then,theNeRFmodel is utilized for 3Dmodeling.For copyright verification,a secret image is generated by inputting a confidential viewpoint into NeRF.On this basis,design an extraction network to extract embedded watermark images fromconfidential viewpoints.In the event of suspicion regarding the unauthorized usage of NeRF in a black-box scenario,the verifier can extract the watermark from the confidential viewpoint to authenticate the model’s copyright.The experimental results demonstrate not only the production of visually appealing watermarks but also robust resistance against various types of noise attacks,thereby substantiating the effectiveness of our approach in safeguarding NeRF.
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No.ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No.2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No.KJ2020A0301)。
文摘This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62473348 and 62076229)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2023010201010101).
文摘This paper addresses the preassigned-time chaos control problem of memristor chaotic systems with time delays.Since the introduction of memristor,the presented models are nonlinear systems with chaotic dynamics.First,the TS fuzzy method is adopted to describe the chaotic systems.Then,a sliding-model-based control approach is proposed to achieve the preassigned-time stabilization of the presented models,where the upper bound of stabilization time can be arbitrarily specified in advance.Finally,simulation results demonstrate the validity of presented control approach and theoretic results.
基金This work has received funding from National Natural Science Foundation of China(No.42275157).
文摘With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.
基金supported by the National Natural Science Foundation of China,with Fund Numbers 62272478,62102451the National Defense Science and Technology Independent Research Project(Intelligent Information Hiding Technology and Its Applications in a Certain Field)and Science and Technology Innovation Team Innovative Research Project Research on Key Technologies for Intelligent Information Hiding”with Fund Number ZZKY20222102.
文摘As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge,this paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural network watermarking.Leveraging 2D image watermarking technology for 3D scene protection,the scheme embeds watermarks within the training images of neural radiance fields through the forward process in invertible neural networks and extracts them from images rendered by neural radiance fields through the reverse process,thereby ensuring copyright protection for both the neural radiance fields and associated 3D scenes.However,challenges such as information loss during rendering processes and deliberate tampering necessitate the design of an image quality enhancement module to increase the scheme’s robustness.This module restores distorted images through neural network processing before watermark extraction.Additionally,embedding watermarks in each training image enables watermark information extraction from multiple viewpoints.Our proposed watermarking method achieves a PSNR(Peak Signal-to-Noise Ratio)value exceeding 37 dB for images containing watermarks and 22 dB for recovered watermarked images,as evaluated on the Lego,Hotdog,and Chair datasets,respectively.These results demonstrate the efficacy of our scheme in enhancing copyright protection.
文摘Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Research Groups Program Grant No.(RGP-1443-0051).
文摘Owing to the rapid increase in the interchange of text information through internet networks,the reliability and security of digital content are becoming a major research problem.Tampering detection,Content authentication,and integrity verification of digital content interchanged through the Internet were utilized to solve a major concern in information and communication technologies.The authors’difficulties were tampering detection,authentication,and integrity verification of the digital contents.This study develops an Automated Data Mining based Digital Text Document Watermarking for Tampering Attack Detection(ADMDTW-TAD)via the Internet.The DM concept is exploited in the presented ADMDTW-TAD technique to identify the document’s appropriate characteristics to embed larger watermark information.The presented secure watermarking scheme intends to transmit digital text documents over the Internet securely.Once the watermark is embedded with no damage to the original document,it is then shared with the destination.The watermark extraction process is performed to get the original document securely.The experimental validation of the ADMDTW-TAD technique is carried out under varying levels of attack volumes,and the outcomes were inspected in terms of different measures.The simulation values indicated that the ADMDTW-TAD technique improved performance over other models.
基金supported by the Yayasan Universiti Teknologi PETRONAS Grants,YUTP-PRG(015PBC-027)YUTP-FRG(015LC0-311),Hilmi Hasan,www.utp.edu.my.
文摘Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.