期刊文献+
共找到350,713篇文章
< 1 2 250 >
每页显示 20 50 100
An Efficient Modelling of Oversampling with Optimal Deep Learning Enabled Anomaly Detection in Streaming Data
1
作者 R.Rajakumar S.Sathiya Devi 《China Communications》 SCIE CSCD 2024年第5期249-260,共12页
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL... Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets. 展开更多
关键词 anomaly detection deep learning hyperparameter optimization OVERSAMPLING SMOTE streaming data
下载PDF
Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach
2
作者 Dayu Xu Jiaming Lu +1 位作者 Xuyao Zhang Hongtao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2557-2573,共17页
Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims... Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims to elevate the efficiency and precision of data stream clustering,leveraging the TEDA(Typicality and Eccentricity Data Analysis)algorithm as a foundation,we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm.The original TEDA algorithm,grounded in the concept of“Typicality and Eccentricity Data Analytics”,represents an evolving and recursive method that requires no prior knowledge.While the algorithm autonomously creates and merges clusters as new data arrives,its efficiency is significantly hindered by the need to traverse all existing clusters upon the arrival of further data.This work presents the NS-TEDA(Neighbor Search Based Typicality and Eccentricity Data Analysis)algorithm by incorporating a KD-Tree(K-Dimensional Tree)algorithm integrated with the Scapegoat Tree.Upon arrival,this ensures that new data points interact solely with clusters in very close proximity.This significantly enhances algorithm efficiency while preventing a single data point from joining too many clusters and mitigating the merging of clusters with high overlap to some extent.We apply the NS-TEDA algorithm to several well-known datasets,comparing its performance with other data stream clustering algorithms and the original TEDA algorithm.The results demonstrate that the proposed algorithm achieves higher accuracy,and its runtime exhibits almost linear dependence on the volume of data,making it more suitable for large-scale data stream analysis research. 展开更多
关键词 data stream clustering TEDA KD-TREE scapegoat tree
下载PDF
基于Data Streamer开发的摩擦力可视化测量装置 被引量:1
3
作者 张习祥 《中学物理》 2024年第2期59-62,共4页
在初中物理教材中通过弹簧测力计测量摩擦力,由于拉力变化不均匀,实验结果存在偏差.本文针对原实验的不足进行改进创新,用Data Streamer串口采集插件实时读取拉力传感器采集的摩擦力数据到Excel中进行数据分析,绘制出可视化的实时动态图... 在初中物理教材中通过弹簧测力计测量摩擦力,由于拉力变化不均匀,实验结果存在偏差.本文针对原实验的不足进行改进创新,用Data Streamer串口采集插件实时读取拉力传感器采集的摩擦力数据到Excel中进行数据分析,绘制出可视化的实时动态图像,让实验者直观感知摩擦力的实时变化过程,增强实验的趣味性和交互性. 展开更多
关键词 ARDUINO data streamer 摩擦力 可视化 数字化
下载PDF
A novel method for clustering cellular data to improve classification
4
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
下载PDF
Synthetic data as an investigative tool in hypertension and renal diseases research
5
作者 Aleena Jamal Som Singh Fawad Qureshi 《World Journal of Methodology》 2025年第1期9-13,共5页
There is a growing body of clinical research on the utility of synthetic data derivatives,an emerging research tool in medicine.In nephrology,clinicians can use machine learning and artificial intelligence as powerful... There is a growing body of clinical research on the utility of synthetic data derivatives,an emerging research tool in medicine.In nephrology,clinicians can use machine learning and artificial intelligence as powerful aids in their clinical decision-making while also preserving patient privacy.This is especially important given the epidemiology of chronic kidney disease,renal oncology,and hypertension worldwide.However,there remains a need to create a framework for guidance regarding how to better utilize synthetic data as a practical application in this research. 展开更多
关键词 Synthetic data Artificial intelligence NEPHROLOGY Blood pressure RESEARCH EDITORIAL
下载PDF
Clustering algorithm for multiple data streams based on spectral component similarity 被引量:1
6
作者 邹凌君 陈崚 屠莉 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期264-266,共3页
A new algorithm for clustering multiple data streams is proposed.The algorithm can effectively cluster data streams which show similar behavior with some unknown time delays.The algorithm uses the autoregressive (AR... A new algorithm for clustering multiple data streams is proposed.The algorithm can effectively cluster data streams which show similar behavior with some unknown time delays.The algorithm uses the autoregressive (AR) modeling technique to measure correlations between data streams.It exploits estimated frequencies spectra to extract the essential features of streams.Each stream is represented as the sum of spectral components and the correlation is measured component-wise.Each spectral component is described by four parameters,namely,amplitude,phase,damping rate and frequency.The ε-lag-correlation between two spectral components is calculated.The algorithm uses such information as similarity measures in clustering data streams.Based on a sliding window model,the algorithm can continuously report the most recent clustering results and adjust the number of clusters.Experiments on real and synthetic streams show that the proposed clustering method has a higher speed and clustering quality than other similar methods. 展开更多
关键词 data streams CLUSTERING AR model spectral component
下载PDF
Oracle Data Guard与Oracle Streams技术对比 被引量:4
7
作者 关锦明 张宗平 李海雁 《现代计算机》 2007年第10期72-74,共3页
Oracle Data Guard和Oracle Streams是提高数据库可用性,构建灾难备份系统以及实现数据库分布的理想的技术解决方案。探讨Oracle Data Guard和Oracle Streams技术的实现原理以及技术特点。
关键词 数据库 数据保护 数据复制 数据同步 data GUARD streamS
下载PDF
High-resolution frequency-domain Radon transform and variable-depth streamer data deghosting 被引量:11
8
作者 宋建国 宫云良 李珊 《Applied Geophysics》 SCIE CSCD 2015年第4期564-572,629,共10页
Receiver ghost reflections adversely affect variable-depth streamer (VDS) data acquisition. In addition, the frequency notches caused by the interference between receiver ghosts and primary waves strongly affect sei... Receiver ghost reflections adversely affect variable-depth streamer (VDS) data acquisition. In addition, the frequency notches caused by the interference between receiver ghosts and primary waves strongly affect seismic data processing and imaging. We developed a high-resolution Radon transform algorithm and used it to predict receiver ghosts from VDS data. The receiver ghost reflections are subtracted and removed from the raw data. We propose a forward Radon transform operator of VDS data in the frequency domain and, based on the ray paths of the receiver ghosts, we propose an inverse Radon transform operator. We apply the proposed methodology to model and field data with good results. We use matching and subtracting modules of commercially available seismic data processing software to remove the receiver ghosts. The frequency notches are compensated and the effective frequency bandwidth of the seismic data broadens. 展开更多
关键词 variable-depth streamer data deghosting Radon transform bandwidth
下载PDF
Data partitioning based on sampling for power load streams
9
作者 王永利 徐宏炳 +2 位作者 董逸生 钱江波 刘学军 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期293-298,共6页
A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,wh... A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing. 展开更多
关键词 data streams continuous queries parallel processing sampling data partitioning
下载PDF
Min-wise hash function-based sampling over distributed data streams
10
作者 崇志宏 倪巍伟 +2 位作者 徐立臻 吕建华 谢英豪 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期456-459,共4页
In order to avoid the redundant and inconsistent information in distributed data streams, a sampling method based on min-wise hash functions is designed and the practical semantics of the union of distributed data str... In order to avoid the redundant and inconsistent information in distributed data streams, a sampling method based on min-wise hash functions is designed and the practical semantics of the union of distributed data streams is defined. First, for each family of min-wise hash functions, the data with the minimum hash value are selected as local samples and the biased effect caused by frequent updates in a single data stream is filtered out. Secondly, for the same hash function, the sample with the minimum hash value is selected as the global sample and the local samples are combined at the center node to filter out the biased effect of duplicated updates. Finally, based on the obtained uniform samples, several aggregations on the defined semantics of the union of data streams are precisely estimated. The results of comparison tests on synthetic and real-life data streams demonstrate the effectiveness of this method. 展开更多
关键词 data streams AGGREGATION rain-wise hashing
下载PDF
Super point detection based on sampling and data streaming algorithms
11
作者 程光 强士卿 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期224-227,共4页
In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and... In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption. 展开更多
关键词 super point flow sampling data streaming
下载PDF
An Efficient Outlier Detection Approach on Weighted Data Stream Based on Minimal Rare Pattern Mining 被引量:1
12
作者 Saihua Cai Ruizhi Sun +2 位作者 Shangbo Hao Sicong Li Gang Yuan 《China Communications》 SCIE CSCD 2019年第10期83-99,共17页
The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional... The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional datasets. In addition, the traditional outlier detection method does not consider the frequency of subsets occurrence, thus, the detected outliers do not fit the definition of outliers (i.e., rarely appearing). The pattern mining-based outlier detection approaches have solved this problem, but the importance of each pattern is not taken into account in outlier detection process, so the detected outliers cannot truly reflect some actual situation. Aimed at these problems, a two-phase minimal weighted rare pattern mining-based outlier detection approach, called MWRPM-Outlier, is proposed to effectively detect outliers on the weight data stream. In particular, a method called MWRPM is proposed in the pattern mining phase to fast mine the minimal weighted rare patterns, and then two deviation factors are defined in outlier detection phase to measure the abnormal degree of each transaction on the weight data stream. Experimental results show that the proposed MWRPM-Outlier approach has excellent performance in outlier detection and MWRPM approach outperforms in weighted rare pattern mining. 展开更多
关键词 OUTLIER detection WEIGHTED data stream MINIMAL WEIGHTED RARE pattern MINING deviation factors
下载PDF
Dynamically Computing Approximate Frequency Counts in Sliding Window over Data Stream 被引量:1
13
作者 NIE Guo-liang LU Zheng-ding 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期283-288,共6页
This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constru... This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective. 展开更多
关键词 data stream sliding window approximation algorithms frequency counts
下载PDF
Restoration of an Inner-City Stream and Its Impact on Air Temperature and Humidity Based on Long-Term Monitoring Data 被引量:2
14
作者 Kyu Rang KIM Tae Heon KWON +3 位作者 Yeon-Hee KIM Hae-Jung KOO Byoung-Cheol CHOI Chee-Young CHOI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第2期283-292,共10页
Spatiotemporal changes in air temperature and humidity associated with the restoration of an innercity stream in Seoul, Korea, are investigated based on long-term monitoring data. The Cheonggye stream, covered under a... Spatiotemporal changes in air temperature and humidity associated with the restoration of an innercity stream in Seoul, Korea, are investigated based on long-term monitoring data. The Cheonggye stream, covered under a concrete structure for 46 years, was restored in 2005 and runs 5.8 km eastward through a central region of Seoul. Long-term monitoring of the air temperature and relative humidity was made along the stream throughout the restoration and across the stream after the restoration. The area along the stream had a higher air temperature than the entire metropolitan area. The temperature anomaly between the monitoring area and the surrounding metropolitan area was 0.13℃ lower on average at the center of the stream after the restoration. The stream's effect on the air temperature was also evident in the temperature distribution along a street traversing the stream. The relative and specific humidities were increased due to the restoration. The restored stream modified the nearby urban climate in the opposite direction compared to urbanization. The results could be used as a model case in mitigating urban climate by a stream in future urban planning practices. 展开更多
关键词 urban heat island stream RESTORATION land-use VEGETATION Cheonggye stream
下载PDF
Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse 被引量:3
15
作者 Yihong Yang Sheng Ding +4 位作者 Yuwen Liu Shunmei Meng Xiaoxiao Chi Rui Ma Chao Yan 《Digital Communications and Networks》 SCIE CSCD 2022年第4期498-507,共10页
Edge-computing-enabled smart greenhouses are a representative application of the Internet of Things(IoT)technology,which can monitor the environmental information in real-time and employ the information to contribute ... Edge-computing-enabled smart greenhouses are a representative application of the Internet of Things(IoT)technology,which can monitor the environmental information in real-time and employ the information to contribute to intelligent decision-making.In the process,anomaly detection for wireless sensor data plays an important role.However,the traditional anomaly detection algorithms originally designed for anomaly detection in static data do not properly consider the inherent characteristics of the data stream produced by wireless sensors such as infiniteness,correlations,and concept drift,which may pose a considerable challenge to anomaly detection based on data stream and lead to low detection accuracy and efficiency.First,the data stream is usually generated quickly,which means that the data stream is infinite and enormous.Hence,any traditional off-line anomaly detection algorithm that attempts to store the whole dataset or to scan the dataset multiple times for anomaly detection will run out of memory space.Second,there exist correlations among different data streams,and traditional algorithms hardly consider these correlations.Third,the underlying data generation process or distribution may change over time.Thus,traditional anomaly detection algorithms with no model update will lose their effects.Considering these issues,a novel method(called DLSHiForest)based on Locality-Sensitive Hashing and the time window technique is proposed to solve these problems while achieving accurate and efficient detection.Comprehensive experiments are executed using a real-world agricultural greenhouse dataset to demonstrate the feasibility of our approach.Experimental results show that our proposal is practical for addressing the challenges of traditional anomaly detection while ensuring accuracy and efficiency. 展开更多
关键词 Anomaly detection data stream DLSHiForest Smart greenhouse Edge computing
下载PDF
A graph-based sliding window multi-join over data stream 被引量:1
16
作者 ZHANG Liang Byeong-Seob You +2 位作者 GE Jun-wei LIU Zhao-hong Hae-Young Bae 《重庆邮电大学学报(自然科学版)》 2007年第3期362-366,共5页
Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo... Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment. 展开更多
关键词 数据流 查询优化 图论 可调整窗口
下载PDF
Differentially Private Real-Time Streaming Data Publication Based on Sliding Window Under Exponential Decay 被引量:2
17
作者 Lan Sun Chen Ge +2 位作者 Xin Huang Yingjie Wu Yan Gao 《Computers, Materials & Continua》 SCIE EI 2019年第1期61-78,共18页
Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data pu... Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data publication mostly pay close attention to boosting query accuracy,but pay less attention to query efficiency,and ignore the effect of timeliness on data weight.In this paper,we propose an effective algorithm of differential privacy streaming data publication under exponential decay mode.Firstly,by introducing the Fenwick tree to divide and reorganize data items in the stream,we achieve a constant time complexity for inserting a new item and getting the prefix sum.Meanwhile,we achieve time complicity linear to the number of data item for building a tree.After that,we use the advantage of matrix mechanism to deal with relevant queries and reduce the global sensitivity.In addition,we choose proper diagonal matrix further improve the range query accuracy.Finally,considering about exponential decay,every data item is weighted by the decay factor.By putting the Fenwick tree and matrix optimization together,we present complete algorithm for differentiate private real-time streaming data publication.The experiment is designed to compare the algorithm in this paper with similar algorithms for streaming data release in exponential decay.Experimental results show that the algorithm in this paper effectively improve the query efficiency while ensuring the quality of the query. 展开更多
关键词 Differential privacy streamING data PUBLICATION EXPONENTIAL decay matrix mechanism SLIDING window
下载PDF
Big Data Stream Analytics for Near Real-Time Sentiment Analysis 被引量:1
18
作者 Otto K. M. Cheng Raymond Lau 《Journal of Computer and Communications》 2015年第5期189-195,共7页
In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedente... In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedented opportunities to tap into big data to mine valuable business intelligence. However, traditional business analytics methods may not be able to cope with the flood of big data. The main contribution of this paper is the illustration of the development of a novel big data stream analytics framework named BDSASA that leverages a probabilistic language model to analyze the consumer sentiments embedded in hundreds of millions of online consumer reviews. In particular, an inference model is embedded into the classical language modeling framework to enhance the prediction of consumer sentiments. The practical implication of our research work is that organizations can apply our big data stream analytics framework to analyze consumers’ product preferences, and hence develop more effective marketing and production strategies. 展开更多
关键词 BIG data data stream ANALYTICS SENTIMENT Analysis ONLINE Review
下载PDF
SCMR:a semantic-based coherence micro-cluster recognition algorithm for hybrid web data stream 被引量:2
19
作者 王珉 Wang Yongbin Li Ying 《High Technology Letters》 EI CAS 2016年第2期224-232,共9页
Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregat... Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregation. Until now, many algorithms have been proposed to work on this issue. However, the deficiency of these solutions is that they cannot recognize the micro-cluster data stream accurately. A semantic-based coherent micro-cluster recognition algorithm for hybrid web data stream is nronosed.Firstly, an objective function is proposed to recognize the coherence micro-cluster and then the coher- ence micro-cluster recognition algorithm for hybrid web data stream based on semantic is raised. Fi- 展开更多
关键词 hybrid web data stream coherence micro-clustering entity unified object coher-ence semantic computing
下载PDF
Strategy for Data Stream Processing Based on Measurement Metadata: An Outpatient Monitoring Scenario 被引量:1
20
作者 Mario Diván Luis Olsina Silvia Gordillo 《Journal of Software Engineering and Applications》 2011年第12期653-665,共13页
In this work we discuss SDSPbMM, an integrated Strategy for Data Stream Processing based on Measurement Metadata, applied to an outpatient monitoring scenario. The measures associated to the attributes of the patient ... In this work we discuss SDSPbMM, an integrated Strategy for Data Stream Processing based on Measurement Metadata, applied to an outpatient monitoring scenario. The measures associated to the attributes of the patient (entity) under monitoring, come from heterogeneous data sources as data streams, together with metadata associated with the formal definition of a measurement and evaluation project. Such metadata supports the patient analysis and monitoring in a more consistent way, facilitating for instance: i) The early detection of problems typical of data such as missing values, outliers, among others;and ii) The risk anticipation by means of on-line classification models adapted to the patient. We also performed a simulation using a prototype developed for outpatient monitoring, in order to analyze empirically processing times and variable scalability, which shed light on the feasibility of applying the prototype to real situations. In addition, we analyze statistically the results of the simulation, in order to detect the components which incorporate more variability to the system. 展开更多
关键词 MEASUREMENT data stream Processing C-INCAMI STATISTICAL Analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部