期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
A New Approach for Knowledge Discovery in Distributed Databases Using Fragmented Data Storage Model
1
作者 Masoud Pesaran Behbahani Islam Choudhury Souheil Khaddaj 《Chinese Business Review》 2013年第12期834-845,共12页
Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new genera... Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided. 展开更多
关键词 data mining decision-support system distributed databases knowledge discovery in database (KDD)
下载PDF
Structural choice based on knowledge discovery system
2
作者 XING Fangliang(邢方亮) +1 位作者 WANG Guangyuan(王光远) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第3期263-266,共4页
Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part c... Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part constructed with a KDD subsystem, is put forward to make a decision for a large scale engineering project. A typical CBR system consists of four parts: case representation, case retriever, evaluation, and adaptation. A case library is a set of parameterized excellent and successful structures. For a structural choice, the key point is that the system must be able to detect the pattern classes hidden in the case library and classify the input parameters into classes properly. That is done by using the KDD Data Mining algorithm based on Self Organizing Feature Maps (SOFM), which makes the whole system more adaptive, self organizing, self learning and open. 展开更多
关键词 knowledge discovery in database data mining SELF-ORGANIZING feature MAPS STRUCTURAL CHOICE
下载PDF
An Overview of Data Mining and Knowledge Discovery 被引量:8
3
作者 范建华 李德毅 《Journal of Computer Science & Technology》 SCIE EI CSCD 1998年第4期348-368,共21页
With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data ... With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research. 展开更多
关键词 knowledge discovery in databases data mining machine learning association rule CLASSIFICATION data clustering data generalization pattern searching
原文传递
Knowledge Discovery and its Applications in Telecommunications Industry 被引量:2
4
作者 WanYan SiYaqing 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 1999年第1期46-51,共6页
It is important for telecom companies to make sense of the large number of data they have accumulated over the years. This paper reviews the concepts and the techniques of knowledge discovery in databases (KDD), and s... It is important for telecom companies to make sense of the large number of data they have accumulated over the years. This paper reviews the concepts and the techniques of knowledge discovery in databases (KDD), and surveys applications of this technology in the telecommunications sector all over the world. It also discusses some possible applications of this technology in China, and reports a preliminary result of the first attempt to apply KDD technique in telephone traffic volume prediction. It concludes that KDD is a promising technology that can help to enhance-the competitiveness of China's telecom companies in the face of looming competition in a liberated market. 展开更多
关键词 knowledge discovery in databases telecommunications data mining
原文传递
Human Body Information Database and Method of Application
5
作者 ZHANG Li LI Yanmei 《International English Education Research》 2016年第7期112-114,共3页
This paper elaborate the emergence of human information database and the important role it plays in the various industries of economic development. It also interpret the primary human information database of current d... This paper elaborate the emergence of human information database and the important role it plays in the various industries of economic development. It also interpret the primary human information database of current domestic and abroad and analysis it's classification characteristic, Besides, this papers further explains how to make use of human information database and how to make the database to play its due value. In the end, the prospect of our country's body information database has been set forth, using relatively mature foreign database to improve Chinese body information database. 展开更多
关键词 database human body information data mining knowledge discovery in database
下载PDF
Integrated Solution for Discovery of Literature Information Knowledge
6
作者 徐慧 《International Journal of Mining Science and Technology》 SCIE EI 2000年第2期91-94,共4页
An integrated solution for discovery of literature information knowledge is proposed. The analytic model of literature Information model and discovery of literature information knowledge are illustrated. Practical ill... An integrated solution for discovery of literature information knowledge is proposed. The analytic model of literature Information model and discovery of literature information knowledge are illustrated. Practical illustrative example for discovery of literature information knowledge is given. 展开更多
关键词 knowledge discovery data MINING data warehouse database Weh
下载PDF
基于网络环境的分布式KDD及Data Mining研究 被引量:6
7
作者 何炎祥 彭锋 +2 位作者 宋文欣 熊汉卫 陈莘萌 《小型微型计算机系统》 CSCD 北大核心 1999年第10期744-746,共3页
本文针对KDD 的研究现状及其面临的挑战,主要讨论了基于网络环境下,面向多个站点机、多种数据库、多类数据源的分布式KDD 和Data Mining 的整体方案和实验系统模型,研究内容包括高效分布式开采算法,KDD 过程的... 本文针对KDD 的研究现状及其面临的挑战,主要讨论了基于网络环境下,面向多个站点机、多种数据库、多类数据源的分布式KDD 和Data Mining 的整体方案和实验系统模型,研究内容包括高效分布式开采算法,KDD 过程的无缝集成,KDD 中的知识表示。 展开更多
关键词 知识发现 数据开采 知识表示 可视化 数据库系统
下载PDF
Constructing a raster-based spatio-temporal hierarchical data model for marine fisheries application 被引量:2
8
作者 SU Fenzhen ZHOU Chenhu ZHANG Tianyu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第1期57-63,共7页
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently... Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels. 展开更多
关键词 marine geographical information system spatio-temporal data model knowledge discovery fishery management data warehouse
下载PDF
Designing a Model to Study Data Mining in Distributed Environment
9
作者 Md. Abadur Rahman Masud Karim 《Journal of Data Analysis and Information Processing》 2021年第1期23-29,共7页
To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using d... To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed. 展开更多
关键词 data Mining Distributed database knowledge discovery Classification Algorithm
下载PDF
An Experimental Analysis of the Applications of Datamining Methods on Bigdata
10
作者 CH.Naga Santhosh Kumar K.S.Reddy 《Journal of Autonomous Intelligence》 2019年第3期31-39,共9页
Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been br... Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been broadly utilized in the lifecycle of electronic items that range from the structure and generation stages to the administration organize.A far reaching examination of DM with Big Data and a survey of its application in the phases of its lifecycle won't just profit scientists to create solid research.As of late huge data have turned into a trendy expression,which constrained the analysts to extend the current data mining methods to adapt to the advanced idea of data and to grow new scientific procedures.In this paper,we build up an exact assessment technique dependent on the standard of Design of Experiment.We apply this technique to assess data mining instruments and AI calculations towards structure huge data examination for media transmission checking data.Two contextual investigations are directed to give bits of knowledge of relations between the necessities of data examination and the decision of an instrument or calculation with regards to data investigation work processes. 展开更多
关键词 data Mining Big data knowledge discovery databases Decision Tree Cloud data Mining K-Closest Neighbor Artificial Intelligence CLUSTER
下载PDF
Taxpayers Fraudulent Behavior Modeling The Use of Datamining in Fiscal Fraud Detecting Moroccan Case
11
作者 Farid Ameur Mohamed Tkiouat 《Applied Mathematics》 2012年第10期1207-1213,共7页
The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the go... The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the government intervention to bring order and establish a fiscal justice. This study emphasizes the determination of the interactions linking taxpayers with tax authorities. We try to see how fiscal audit can influence taxpayers’ fraudulent behavior. First of all, we present a theoretical study of a model pre established by other authors. We have released some conditions of this model and we have introduced a new parameter reflecting the efficiency of tax control;we found that the efficiency of a fiscal control have an important effect on these interactions. Basing on the fact that the detection of fraudulent taxpayers is the most difficult step in fiscal control, We established a new approach using DATA MINING process in order to improve fiscal control efficiency. We found results that reflect fairly the conduct of taxpayers that we have tested based on actual statistics. The results are reliable. 展开更多
关键词 TAX FRAUD TAX EVASION data Mining knowledge discovery in databases (KDD) FISCAL Policy FISCAL Reform FISCAL Control FISCAL Justice TAXPAYERS TAX Administration
下载PDF
Spatial data mining and visualization based on self-organizing map
12
作者 LIU Shu-ying OUYANG Hong-ji PENG Fang 《通讯和计算机(中英文版)》 2008年第12期55-60,共6页
关键词 空间数据分析 数据挖掘 可视化系统 分析方法
下载PDF
数据挖掘发展研究 被引量:25
13
作者 张伟 刘勇国 +2 位作者 彭军 廖晓峰 吴中福 《计算机科学》 CSCD 北大核心 2001年第7期79-81,94,共4页
Mining knowledge from database has been thought as a key research issue in database system. Great mterest has been paid in data mining by researchers in different fields. In this paper,data mining techniques are intro... Mining knowledge from database has been thought as a key research issue in database system. Great mterest has been paid in data mining by researchers in different fields. In this paper,data mining techniques are introduced broadly including its definition,purpose,characteristic, principal processes and classifications. As an example,the studies on the mining association rules are illustrated. At last,some data mining prototypes are provided and several research trends on the data mining are discussed. 展开更多
关键词 数据挖掘 知识发现 数据库 机器学习
下载PDF
现代数据挖掘技术研究进展 被引量:15
14
作者 梁协雄 雷汝焕 曹长修 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第3期21-27,共7页
数据挖掘是一个多学科交叉融合而形成的新兴的学科。笔者介绍了数据挖掘的一些基本知识及有关概念,阐述了数据挖掘的一些基本方法(传统的统计学方法、神经网络、决策树、进化式程序设计、基于事例的推理方法、遗产算法、非线性回归方法)... 数据挖掘是一个多学科交叉融合而形成的新兴的学科。笔者介绍了数据挖掘的一些基本知识及有关概念,阐述了数据挖掘的一些基本方法(传统的统计学方法、神经网络、决策树、进化式程序设计、基于事例的推理方法、遗产算法、非线性回归方法),然后对当前数据挖掘在各种领域的应用进行了概括,并提出了一些难点(数据质量、信息可视化、极大数据库、信息分析员技能)和今后的研究方向。 展开更多
关键词 数据库 知识发现 数据挖掘 数据仓库 决策支持 神经网络 决策树
下载PDF
基于Web的数据采掘 被引量:22
15
作者 王利强 唐常杰 +1 位作者 于中华 何雪梅 《计算机应用》 CSCD 1998年第10期9-12,共4页
本文论述了知识发现和数据采掘的概念以及所使用的技术,并分析了在Internet进行数据采掘的特点和难点。最后,介绍了我们自己开发的WebMiner系统的结构和用到的技术。
关键词 数据采掘 数据库 知识发现 WEB INTERNET网
下载PDF
基于大型数据仓库的数据采掘:研究综述 被引量:256
16
作者 胡侃 夏绍玮 《软件学报》 EI CSCD 北大核心 1998年第1期53-63,共11页
本文介绍了数据采掘技术的总体研究情况,包括数据采掘的定义、与其他学科的关系、采掘的主要过程、分类和主要技术手段.作为例子介绍了关联规则采掘的研究,同时介绍了一些原型系统和商业产品以及主要应用领域,指出了数据采掘研究的... 本文介绍了数据采掘技术的总体研究情况,包括数据采掘的定义、与其他学科的关系、采掘的主要过程、分类和主要技术手段.作为例子介绍了关联规则采掘的研究,同时介绍了一些原型系统和商业产品以及主要应用领域,指出了数据采掘研究的挑战性以及目前的局限性.结合当前数据仓库的发展,本文探讨了数据仓库环境下数据采掘的特点和潜力. 展开更多
关键词 数据采掘 数据仓库 数据处理 数据库系统
下载PDF
模糊粗糙集理论在变压器故障诊断中的应用 被引量:36
17
作者 熊浩 李卫国 +1 位作者 畅广辉 郭惠敏 《中国电机工程学报》 EI CSCD 北大核心 2008年第7期141-147,共7页
提出一种改进的三比值变压器故障诊断方法。以模糊粗糙集为数学基础建立信息决策系统,采用数据挖掘技术解决这一建立过程中的若干问题。考虑到信息源的连续取值对模糊粗糙推理的影响,利用模糊集方法处理连续取值型属性。利用数据库知识... 提出一种改进的三比值变压器故障诊断方法。以模糊粗糙集为数学基础建立信息决策系统,采用数据挖掘技术解决这一建立过程中的若干问题。考虑到信息源的连续取值对模糊粗糙推理的影响,利用模糊集方法处理连续取值型属性。利用数据库知识发现技术挖掘数据库中隐含的聚类信息,设置属性的模糊取值并确定隶属函数。并在此基础上基于包含度对模糊规则进行约简和剔除。设计了适用于模糊粗糙规则提取的数据挖掘算法,从数据库中提取规则,按属性集建立多表决策库的拓扑结构。诊断结果表明,该决策库故障正判率较高,模糊判断规则适应现场条件。 展开更多
关键词 数据库知识发现 溶解气体分析 模糊粗糙集 据挖掘
下载PDF
数据挖掘与数据库知识发现:统计学的观点 被引量:28
18
作者 马江洪 张文修 徐宗本 《工程数学学报》 CSCD 北大核心 2002年第1期1-13,共13页
数据挖掘和数据库知识发现是当前国际科技界的一个研究热点。这是一个介于统计学、模式识别、人工智能、机器学习、数据库技术以及高性能并行计算等领域的交叉新兴学科 ,具有极为广泛的应用前景。从统计学的角度来透视其中相关的统计问... 数据挖掘和数据库知识发现是当前国际科技界的一个研究热点。这是一个介于统计学、模式识别、人工智能、机器学习、数据库技术以及高性能并行计算等领域的交叉新兴学科 ,具有极为广泛的应用前景。从统计学的角度来透视其中相关的统计问题 ,提出了传统统计学面临的挑战 。 展开更多
关键词 数据挖掘 统计学 数据库 知识发现
下载PDF
数据挖掘和知识发现的技术方法 被引量:35
19
作者 吕安民 林宗坚 李成名 《测绘科学》 CSCD 2000年第4期36-39,共4页
数据挖掘是指从数据库中提取出隐含的、先前不知道的有用知识的过程。本文从数据挖掘和知识发现的概念出发 ,总结了数据挖掘常采用的技术方法 ,并从数据挖掘采用的技术方法的角度对数据挖掘进行分类 ,指出每种技术适合挖掘出哪些知识 ,... 数据挖掘是指从数据库中提取出隐含的、先前不知道的有用知识的过程。本文从数据挖掘和知识发现的概念出发 ,总结了数据挖掘常采用的技术方法 ,并从数据挖掘采用的技术方法的角度对数据挖掘进行分类 ,指出每种技术适合挖掘出哪些知识 ,比较每种技术的优缺点 ,同时还对几个数据挖掘的应用进行了阐述。 展开更多
关键词 知识发现 数据挖掘 统计分析 数据库 网络 统计法 遗传算法
下载PDF
数据仓库和数据采掘研究综述 被引量:7
20
作者 印勇 曹长修 +1 位作者 林景栋 张邦礼 《重庆大学学报(自然科学版)》 CAS CSCD 2000年第2期116-119,共4页
数据丰富而知识贫乏的状况导致了数据仓库和数据采掘技术的出现 ,引起了许多不同领域的人们的极大关注。对数据仓库和数据采掘的基本概念、关键技术以及主要研究内容作了一个综合性的介绍 ,并讨论了数据仓库和数据采掘相结合的特点和发... 数据丰富而知识贫乏的状况导致了数据仓库和数据采掘技术的出现 ,引起了许多不同领域的人们的极大关注。对数据仓库和数据采掘的基本概念、关键技术以及主要研究内容作了一个综合性的介绍 ,并讨论了数据仓库和数据采掘相结合的特点和发展潜力。 展开更多
关键词 数据仓库 数据采掘 数据库 数据处理
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部