In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode...This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.展开更多
Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around t...Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system.In this paper,we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks(ANN),which can be merged in post-processing with less additional devices.The ANN-based training scheme,enables key prediction without exposing any raw key.Experimental results show that the error between the predicted values and the true ones is in a reasonable range.The CVQKD system can be improved in terms of the secret key rate and the parameter estimation,which involves less additional devices than the traditional CVQKD system.展开更多
The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted...The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted a lot of research interest.However,because of inherent ambiguity,spectrum-based methods fail to discriminate upscale and downscale operations without any prior information.In general,the application of resampling leaves detectable traces in both spatial domain and frequency domain of a resampled image.Firstly,the resampling process will introduce correlations between neighboring pixels.In this case,a set of periodic pixels that are correlated to their neighbors can be found in a resampled image.Secondly,the resampled image has distinct and strong peaks on spectrum while the spectrum of original image has no clear peaks.Hence,in this paper,we propose a dual-stream convolutional neural network for image resampling factors estimation.One of the two streams is gray stream whose purpose is to extract resampling traces features directly from the rescaled images.The other is frequency stream that discovers the differences of spectrum between rescaled and original images.The features from two streams are then fused to construct a feature representation including the resampling traces left in spatial and frequency domain,which is later fed into softmax layer for resampling factor estimation.Experimental results show that the proposed method is effective on resampling factor estimation and outperforms some CNN-based methods.展开更多
It is critical to have precise data about Lithium-ion batteries,such as the State-of-Charge(SoC),to maintain a safe and consistent functioning of battery packs in energy storage systems of electric vehicles.Numerous s...It is critical to have precise data about Lithium-ion batteries,such as the State-of-Charge(SoC),to maintain a safe and consistent functioning of battery packs in energy storage systems of electric vehicles.Numerous strategies for estimating battery SoC,such as by including the coulomb counting and Kalman filter,have been established.As a result of the differences in parameter values between each cell,when these methods are applied to highcapacity battery packs,it has difficulties sustaining the prediction accuracy of overall cells.As a result of aging,the variation in the parameters of each cell is higher as more time is spent in operation.It is suggested in this study to establish an SoC estimate model for a Lithium-ion battery by employing an enhanced Deep Neural Network(DNN)approach.This is because the proposed DNN has a substantial hidden layer,which can accurately predict the SoC of an unknown driving cycle during training,making it ideal for SoC estimation.To evaluate the nonlinearities between voltage and current at various SoCs and temperatures,the proposed DNN is applied.Using current and voltage data measured at various temperatures throughout discharge/charge cycles is necessary for training and testing purposes.When the method has been thoroughly trained with the data collected,it is used for additional cells cycle tests to predict their SoC.The simulation has been conducted for two different Li-ion battery datasets.According to the experimental data,the suggested DNN-based SoC estimate approach produces a low mean absolute error and root-mean-square-error values,say less than 5%errors.展开更多
Electric Fans are very commonly used in the industries, domestic applications and in tunnels for cooling and ventila-tion purposes. Fan parameters estimation is an important task as far as the reliable operation of a ...Electric Fans are very commonly used in the industries, domestic applications and in tunnels for cooling and ventila-tion purposes. Fan parameters estimation is an important task as far as the reliable operation of a fan system is con-cerned. Basically, a fan is mainly consisting of a single phase induction motor and therefore fan system parameters are essentially the electrical parameters e.g. resistances, reactances and some load parameters (fan blades).These parame-ters often change under varying operating conditions and the knowledge of these parameters is necessary to have opti-mum and efficient operation of the system. Therefore, fan system parameters are required to be estimated. Further, fan system parameters estimation is required to ensure the smooth system operation and to avoid any malfunctioning of the system during abnormal working conditions. In this paper, Artificial Neural Networks (ANN) approach has been used for parameter estimation of a fan system. The simulated and experimental results are compared.展开更多
A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunol...A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunology combined with simulated annealing algorithm is used to specify the initial weight vectors, therefore improves the probabiligy of training algorithm to converge to global optima. The applications of the neural network in the modulation style recognition of analog modulated rader signals demonstrate the good performance of the network.展开更多
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor...Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.展开更多
In this paper, we study an application of deep learning to the advanced laser interferometer gravitational wave observatory(LIGO)and advanced Virgo coincident detection of gravitational waves(GWs) from compact binary ...In this paper, we study an application of deep learning to the advanced laser interferometer gravitational wave observatory(LIGO)and advanced Virgo coincident detection of gravitational waves(GWs) from compact binary star mergers. This deep learning method is an extension of the Deep Filtering method used by George and Huerta(2017) for multi-inputs of network detectors.Simulated coincident time series data sets in advanced LIGO and advanced Virgo detectors are analyzed for estimating source luminosity distance and sky location. As a classifier, our deep neural network(DNN) can effectively recognize the presence of GW signals when the optimal signal-to-noise ratio(SNR) of network detectors ≥ 9. As a predictor, it can also effectively estimate the corresponding source space parameters, including the luminosity distance D, right ascension α, and declination δ of the compact binary star mergers. When the SNR of the network detectors is greater than 8, their relative errors are all less than 23%.Our results demonstrate that Deep Filtering can process coincident GW time series inputs and perform effective classification and multiple space parameter estimation. Furthermore, we compare the results obtained from one, two, and three network detectors;these results reveal that a larger number of network detectors results in a better source location.展开更多
The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural n...The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural networks. Then a robust control law is designed to ensure the occurrence of the sliding motion for stabilization of the fractional-order Hopfield neural networks. Besides, for the unknown parameters of the fractional-order Hopfield neural networks, some estimations are made. Based on the fractional-order Lyapunov theory, the finite-time stability of the sliding surface to origin is proved well. Finally, a typical example of three-dimensional uncertain fractional-order Hopfield neural networks is employed to demonstrate the validity of the proposed method.展开更多
Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration b...Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory.Accordingly,in this study a vibration-based nonlocal parameter estimation technique,which can be competitive because of its lower instrumentation and data analysis costs,is proposed.To this end,the nonlocal models of the CNT by using the linear and nonlinear theories are established.Then,time response of the CNT to impulsive force is derived by solving the governing equations numerically.By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average(ARMA)method.The appropriate ARMA parameters,which are chosen by an introduced feature reduction technique,are considered features to identify the value of the nonlocal constant.In this regard,a multi-layer perceptron(MLP)network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant.After training the MLP,based on the assumed linear and nonlinear models,the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.展开更多
Recently,we demonstrated the success of a time-synchronized state estimator using deep neural networks(DNNs)for real-time unobservable distribution systems.In this paper,we provide analytical bounds on the performance...Recently,we demonstrated the success of a time-synchronized state estimator using deep neural networks(DNNs)for real-time unobservable distribution systems.In this paper,we provide analytical bounds on the performance of the state estimator as a function of perturbations in the input measurements.It has already been shown that evaluating performance based only on the test dataset might not effectively indicate the ability of a trained DNN to handle input perturbations.As such,we analytically verify the robustness and trustworthiness of DNNs to input perturbations by treating them as mixed-integer linear programming(MILP)problems.The ability of batch normalization in addressing the scalability limitations of the MILP formulation is also highlighted.The framework is validated by performing time-synchronized distribution system state estimation for a modified IEEE 34-node system and a real-world large distribution system,both of which are incompletely observed by micro-phasor measurement units.展开更多
Aerodynamic modeling and parameter estimation from quick accesses recorder (QAR) data is an important technical way to analyze the effects of highland weather conditions upon aerodynamic characteristics of airplane....Aerodynamic modeling and parameter estimation from quick accesses recorder (QAR) data is an important technical way to analyze the effects of highland weather conditions upon aerodynamic characteristics of airplane. It is also an essential content of flight accident analysis. The related techniques are developed in the present paper, including the geometric method for angle of attack and sideslip angle estimation, the extended Kalman filter associated with modified Bryson-Frazier smoother (EKF-MBF) method for aerodynamic coefficient identification, the radial basis function (RBF) neural network method for aerodynamic mod- eling, and the Delta method for stability/control derivative estimation. As an application example, the QAR data of a civil air- plane approaching a high-altitude airport are processed and the aerodynamic coefficient and derivative estimates are obtained. The estimation results are reasonable, which shows that the developed techniques are feasible. The causes for the distribution of aerodynamic derivative estimates are analyzed. Accordingly, several measures to improve estimation accuracy are put forward.展开更多
Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allo...Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allocation,etc.Modelling of reference evapotranspiration(ET0)using both gene expression programming(GEP)and artificial neural network(ANN)techniques was done using the daily meteorological data of the Pantnagar region,India,from 2010 to 2019.A total of 15 combinations of inputs were used in developing the ET0 models.The model with the least number of inputs consisted of maximum and minimum air temperatures,whereas the model with the highest number of inputs consisted of maximum air temperature,minimum air temperature,mean relative humidity,number of sunshine hours,wind speed at 2mheight and extra-terrestrial radiation as inputs and with ET0 as the output for all the models.All the GEP models were developed for a single functional set and pre-defined genetic operator values,while the best structure in each ANN model was found based on the performance during the testing phase.It was found that ANN models were superior to GEP models for the estimation purpose.It was evident from the reduction in RMSE values ranging from 2%to 56%during training and testing phases in all the ANN models compared with GEP models.The ANN models showed an increase of about 0.96%to 9.72%of R2 value compared to the respective GEP models.The comparative study of these models with multiple linear regression(MLR)depicted that the ANN and GEP models were superior to MLR models.展开更多
Cost estimation has its proven importance as one of essential factors for project success. The aim of this research is to predict the early project cost using neural network. Early project cost represents a key compon...Cost estimation has its proven importance as one of essential factors for project success. The aim of this research is to predict the early project cost using neural network. Early project cost represents a key component in business unit decisions. The most important factors influencing on the parametric cost estimation in construction building projects in Gaza Strip were defined and investigated. A questionnaire survey and relative index ranking technique were used to conclude the most important factors. Fourteen most effective factors were identified. One hundred and six case studies from real executed construction project in Gaza Strip were collected for training and testing the model. The cases were prepared to be used in cost estimate neural networks model. Eighty percent of case studies were used to train and test the model. The remaining 20% was used for model verification. The results revealed the ability to the model to predict cost estimate to an acceptable degree of accuracy. The minimum squares error with 0.005 in training stage and 0.021 in testing stage were recorded.展开更多
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金Project supported by the 2010 Yeungnam University Research Grant
文摘This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.
文摘Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system.In this paper,we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks(ANN),which can be merged in post-processing with less additional devices.The ANN-based training scheme,enables key prediction without exposing any raw key.Experimental results show that the error between the predicted values and the true ones is in a reasonable range.The CVQKD system can be improved in terms of the secret key rate and the parameter estimation,which involves less additional devices than the traditional CVQKD system.
基金the National Natural Science Foundation of China(No.62072480)the Key Areas R&D Program of Guangdong(No.2019B010136002)the Key ScientificResearch Program of Guangzhou(No.201804020068).
文摘The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted a lot of research interest.However,because of inherent ambiguity,spectrum-based methods fail to discriminate upscale and downscale operations without any prior information.In general,the application of resampling leaves detectable traces in both spatial domain and frequency domain of a resampled image.Firstly,the resampling process will introduce correlations between neighboring pixels.In this case,a set of periodic pixels that are correlated to their neighbors can be found in a resampled image.Secondly,the resampled image has distinct and strong peaks on spectrum while the spectrum of original image has no clear peaks.Hence,in this paper,we propose a dual-stream convolutional neural network for image resampling factors estimation.One of the two streams is gray stream whose purpose is to extract resampling traces features directly from the rescaled images.The other is frequency stream that discovers the differences of spectrum between rescaled and original images.The features from two streams are then fused to construct a feature representation including the resampling traces left in spatial and frequency domain,which is later fed into softmax layer for resampling factor estimation.Experimental results show that the proposed method is effective on resampling factor estimation and outperforms some CNN-based methods.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University(KKU)for funding this research project Number(R.G.P.2/133/43).
文摘It is critical to have precise data about Lithium-ion batteries,such as the State-of-Charge(SoC),to maintain a safe and consistent functioning of battery packs in energy storage systems of electric vehicles.Numerous strategies for estimating battery SoC,such as by including the coulomb counting and Kalman filter,have been established.As a result of the differences in parameter values between each cell,when these methods are applied to highcapacity battery packs,it has difficulties sustaining the prediction accuracy of overall cells.As a result of aging,the variation in the parameters of each cell is higher as more time is spent in operation.It is suggested in this study to establish an SoC estimate model for a Lithium-ion battery by employing an enhanced Deep Neural Network(DNN)approach.This is because the proposed DNN has a substantial hidden layer,which can accurately predict the SoC of an unknown driving cycle during training,making it ideal for SoC estimation.To evaluate the nonlinearities between voltage and current at various SoCs and temperatures,the proposed DNN is applied.Using current and voltage data measured at various temperatures throughout discharge/charge cycles is necessary for training and testing purposes.When the method has been thoroughly trained with the data collected,it is used for additional cells cycle tests to predict their SoC.The simulation has been conducted for two different Li-ion battery datasets.According to the experimental data,the suggested DNN-based SoC estimate approach produces a low mean absolute error and root-mean-square-error values,say less than 5%errors.
文摘Electric Fans are very commonly used in the industries, domestic applications and in tunnels for cooling and ventila-tion purposes. Fan parameters estimation is an important task as far as the reliable operation of a fan system is con-cerned. Basically, a fan is mainly consisting of a single phase induction motor and therefore fan system parameters are essentially the electrical parameters e.g. resistances, reactances and some load parameters (fan blades).These parame-ters often change under varying operating conditions and the knowledge of these parameters is necessary to have opti-mum and efficient operation of the system. Therefore, fan system parameters are required to be estimated. Further, fan system parameters estimation is required to ensure the smooth system operation and to avoid any malfunctioning of the system during abnormal working conditions. In this paper, Artificial Neural Networks (ANN) approach has been used for parameter estimation of a fan system. The simulated and experimental results are compared.
文摘A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunology combined with simulated annealing algorithm is used to specify the initial weight vectors, therefore improves the probabiligy of training algorithm to converge to global optima. The applications of the neural network in the modulation style recognition of analog modulated rader signals demonstrate the good performance of the network.
基金This work is supported by Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)(FRGS/1/2020/STG06/UTHM/03/7).
文摘Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.
基金supported by the National Natural Science Foundation of China(Grant Nos.11873001,11633001,11673008,and 61501069)the Natural Science Foundation of Chongqing(Grant No.cstc2018jcyjAX0767)+4 种基金the Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB23040100)Newton International Fellowship Alumni Followon Fundingthe Fundamental Research Funds for the Central Universities Project(Grant Nos.106112017CDJXFLX0014,and 106112016CDJXY300002)Chinese State Scholarship FundNewton International Fellowship Alumni Follow on Funding
文摘In this paper, we study an application of deep learning to the advanced laser interferometer gravitational wave observatory(LIGO)and advanced Virgo coincident detection of gravitational waves(GWs) from compact binary star mergers. This deep learning method is an extension of the Deep Filtering method used by George and Huerta(2017) for multi-inputs of network detectors.Simulated coincident time series data sets in advanced LIGO and advanced Virgo detectors are analyzed for estimating source luminosity distance and sky location. As a classifier, our deep neural network(DNN) can effectively recognize the presence of GW signals when the optimal signal-to-noise ratio(SNR) of network detectors ≥ 9. As a predictor, it can also effectively estimate the corresponding source space parameters, including the luminosity distance D, right ascension α, and declination δ of the compact binary star mergers. When the SNR of the network detectors is greater than 8, their relative errors are all less than 23%.Our results demonstrate that Deep Filtering can process coincident GW time series inputs and perform effective classification and multiple space parameter estimation. Furthermore, we compare the results obtained from one, two, and three network detectors;these results reveal that a larger number of network detectors results in a better source location.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11371049 and 61772063)the Fundamental Research Funds for the Central Universities,China(Grant No.2016JBM070)
文摘The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural networks. Then a robust control law is designed to ensure the occurrence of the sliding motion for stabilization of the fractional-order Hopfield neural networks. Besides, for the unknown parameters of the fractional-order Hopfield neural networks, some estimations are made. Based on the fractional-order Lyapunov theory, the finite-time stability of the sliding surface to origin is proved well. Finally, a typical example of three-dimensional uncertain fractional-order Hopfield neural networks is employed to demonstrate the validity of the proposed method.
文摘Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory.Accordingly,in this study a vibration-based nonlocal parameter estimation technique,which can be competitive because of its lower instrumentation and data analysis costs,is proposed.To this end,the nonlocal models of the CNT by using the linear and nonlinear theories are established.Then,time response of the CNT to impulsive force is derived by solving the governing equations numerically.By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average(ARMA)method.The appropriate ARMA parameters,which are chosen by an introduced feature reduction technique,are considered features to identify the value of the nonlocal constant.In this regard,a multi-layer perceptron(MLP)network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant.After training the MLP,based on the assumed linear and nonlinear models,the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.
基金supported in part by the Department of Energy(No.DE-AR-0001001,No.DE-EE0009355)the National Science Foundation(NSF)(No.ECCS-2145063)。
文摘Recently,we demonstrated the success of a time-synchronized state estimator using deep neural networks(DNNs)for real-time unobservable distribution systems.In this paper,we provide analytical bounds on the performance of the state estimator as a function of perturbations in the input measurements.It has already been shown that evaluating performance based only on the test dataset might not effectively indicate the ability of a trained DNN to handle input perturbations.As such,we analytically verify the robustness and trustworthiness of DNNs to input perturbations by treating them as mixed-integer linear programming(MILP)problems.The ability of batch normalization in addressing the scalability limitations of the MILP formulation is also highlighted.The framework is validated by performing time-synchronized distribution system state estimation for a modified IEEE 34-node system and a real-world large distribution system,both of which are incompletely observed by micro-phasor measurement units.
基金National Natural Science Foundation of China(60832012)
文摘Aerodynamic modeling and parameter estimation from quick accesses recorder (QAR) data is an important technical way to analyze the effects of highland weather conditions upon aerodynamic characteristics of airplane. It is also an essential content of flight accident analysis. The related techniques are developed in the present paper, including the geometric method for angle of attack and sideslip angle estimation, the extended Kalman filter associated with modified Bryson-Frazier smoother (EKF-MBF) method for aerodynamic coefficient identification, the radial basis function (RBF) neural network method for aerodynamic mod- eling, and the Delta method for stability/control derivative estimation. As an application example, the QAR data of a civil air- plane approaching a high-altitude airport are processed and the aerodynamic coefficient and derivative estimates are obtained. The estimation results are reasonable, which shows that the developed techniques are feasible. The causes for the distribution of aerodynamic derivative estimates are analyzed. Accordingly, several measures to improve estimation accuracy are put forward.
文摘Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allocation,etc.Modelling of reference evapotranspiration(ET0)using both gene expression programming(GEP)and artificial neural network(ANN)techniques was done using the daily meteorological data of the Pantnagar region,India,from 2010 to 2019.A total of 15 combinations of inputs were used in developing the ET0 models.The model with the least number of inputs consisted of maximum and minimum air temperatures,whereas the model with the highest number of inputs consisted of maximum air temperature,minimum air temperature,mean relative humidity,number of sunshine hours,wind speed at 2mheight and extra-terrestrial radiation as inputs and with ET0 as the output for all the models.All the GEP models were developed for a single functional set and pre-defined genetic operator values,while the best structure in each ANN model was found based on the performance during the testing phase.It was found that ANN models were superior to GEP models for the estimation purpose.It was evident from the reduction in RMSE values ranging from 2%to 56%during training and testing phases in all the ANN models compared with GEP models.The ANN models showed an increase of about 0.96%to 9.72%of R2 value compared to the respective GEP models.The comparative study of these models with multiple linear regression(MLR)depicted that the ANN and GEP models were superior to MLR models.
文摘Cost estimation has its proven importance as one of essential factors for project success. The aim of this research is to predict the early project cost using neural network. Early project cost represents a key component in business unit decisions. The most important factors influencing on the parametric cost estimation in construction building projects in Gaza Strip were defined and investigated. A questionnaire survey and relative index ranking technique were used to conclude the most important factors. Fourteen most effective factors were identified. One hundred and six case studies from real executed construction project in Gaza Strip were collected for training and testing the model. The cases were prepared to be used in cost estimate neural networks model. Eighty percent of case studies were used to train and test the model. The remaining 20% was used for model verification. The results revealed the ability to the model to predict cost estimate to an acceptable degree of accuracy. The minimum squares error with 0.005 in training stage and 0.021 in testing stage were recorded.