In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the m...The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph).展开更多
In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP...In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was(486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%.The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test(SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 k N, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for+425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways.展开更多
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi...Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.展开更多
The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth co...The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth composite Green function is employed to develop a program for the computation of the hydrodynamic coefficients of the very large FPSO at shallow water. A three-segment model with 1∶100 scale is tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the verification of the numerical method. The experimental and computational results show that the water depth has a substantial effect on wave-induced loads. The wave-induced vertical loads increase with the decrease of water depth for shallow water. Especially, for ultra-shallow water these loads increase very evidently with the decrease of water depth. The long-term prediction values of wave-induced vertical loads increase with the decrease of the ratio of water depth to draught. The long-term prediction values of wave-induced vertical loads are about 8% larger than those for deep water when the ratio of water depth to draught is 3.0. However, water depth hardly affects the long-term prediction values of wave-induced loads when the ratio of water depth to draught is larger than 5.0.展开更多
According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D simila...According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.展开更多
In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading level...In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.展开更多
Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change o...Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change of the caving window location and dimensions and, therefore, the granular coal-gangue movement and flows provide new characteristics during top coal caving. The main inferences we draw are as follows. Firstly, after shifting the supports, the caved top coal layer line and the coal gangue boundary line become steeper and are clearly larger than those under common mining heights. Secondly, during the top coal caving procedure, the speed of the coal-gangue flow increases and at the same drawing interval, the distance between the coal-gangue boundary line and the top beam end is reduced. Thirdly, affected by the drawing ratio, the slope angle of the shield beam and the dimensions of the caving window, it is easy to mix the gangue. A rational drawing interval will cause the coal-gangue boundary line to be slightly behind the down tail boom lower boundary. This rational drawing interval under conditions of large mining heights has been analyzed and determined.展开更多
The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significa...The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.展开更多
Coal seams in Tashan Mine of Datong Coal Group in China average 15 m thick and have been mined by the top coal caving longwall mining method of large mining height. Mining height was 3.8 m and the top coal caving heig...Coal seams in Tashan Mine of Datong Coal Group in China average 15 m thick and have been mined by the top coal caving longwall mining method of large mining height. Mining height was 3.8 m and the top coal caving height was 11.2 m. The gateroad pillar between panels was 38 m. During retreat mining,serious bumps occurred in the gateroads on both sides of the pillar affecting safety production. Therefore,pillarless mining was experimented. Using numerical modeling and comparative study of cases of similar mining condition,it was decided to employ a 6 m wide pillar,rather than the previous 38 m wide pillar.Support system for the gateroads was designed and implemented. During gateroad development,pillar failure conditions and entry deformation were monitored. Hydraulic fracturing method was employed to cut off the K3 sandstone along the entry rib so as to reduce the abutment pressure induced during retreat mining. Support reinforcement method combining grouting and advanced reinforcement methods was proposed to insure stable gateroad ahead of mining. Methane drainage and nitrogen injection were implemented to eliminate hazards associated with mine fire and spontaneous combustion. Since the development of gateroad has just completed,and retreat mining has not begun,the effectiveness of the proposed methods is unknown at this point. However,monitoring will continue until after mining.The results will be published in a separate paper.展开更多
We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of sp...We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of species richness,abundance,diversity and cell density.In regression analysis,all these algal attributes were negatively correlated with the depth gradients at P<0.05.In terms of species richness,the bacillariophytes showed dominance over the cyanophytes and chlorophytes;whereas with respect to standing crop,the cyanophytes showed dominance over the bacillariophytes and chlorophytes.The chlorophyll a was higher at the mid and bottom-depths than the surface-depth in both the downstream and upstream sites,which showed that vertical productivity or biomass accumulation was greater in low light irradiance.The product-moment correlation analysis showed that conductivity,turbidity,dissolved oxygen,reactive phosphate and ammonium-nitrogen were highly correlated with the algal assemblage data.However,photosynthetic active radiation(PAR) showed poor correlation with the community data.These observations have cast some light on the autoecological characteristics,habitat preferences and environmental responses of tropical periphytic communities.展开更多
Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof over...Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.展开更多
Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huangg...Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.展开更多
Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order...Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order to improve the top-coal recovery ratio of fully mechanized cave mining with large mining height, a study was conducted on optimizing the caving process, based on the mechanized caving face 1302N in Longgu Coal Mine. This was achieved by improving the PFC numerical calculation methods, and establishing a more accurate model system. On this basis, the recovery ratio of the top coal in different drawing intervals and technologies was investigated in order to achieve a reasonable caving process. The top-coal tracking system was used for practical surveying of the recovery ratio of top coal.展开更多
Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-...Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-width ratio, a theoretical model is established with the coupling of Navier-Stokes (N-S)~ sediment transport, and bed deformation equations. The flow characteristics and bed response of river are obtained with the perturbation method. The research results show that, under the effect of two- dimensional flow disturbance, the bars and pools present the regular response. For a given sinuousness, the amplitude of the bed response can be used as a criterion to judge the bedform stability. The effects of the Reynolds number, disturbance wavenumber, sinuousness, and bed morphology gradient on the bed response development are described.展开更多
In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-pre...In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.展开更多
In the design of large mining excavator electrical system,a practical reliability allocation method was introduced to allocate system level reliability requirements into subsystem and component levels. During the reli...In the design of large mining excavator electrical system,a practical reliability allocation method was introduced to allocate system level reliability requirements into subsystem and component levels. During the reliability allocation process,factors from the fault and maintenance data were only considered in reliability allocation scheme. It could avoid the disturbance from expert experiences. The entropy method was also used to obtain weights of reliability allocation indexes of large mining excavators considering different factors. Then the failure rate allocation of subsystems and components could be completed.展开更多
Based on simulated material scale modeling and numerical simulation, the protective seam mining method was conducted at one coal mine. After extracting the No.15seam, the overlying strata movement and the deformation ...Based on simulated material scale modeling and numerical simulation, the protective seam mining method was conducted at one coal mine. After extracting the No.15seam, the overlying strata movement and the deformation of the No.9-10 protected seamwere studied. The experiment results show that it is feasible to destress the protectedseams with large interburden thickness. When the face had advanced 200 m from thesetup room, the No.9-10 seam was fully destressed, resulting in easy gas drainage in thedestressed zone. Recommendations on mining sequence of multiple seams mining in thesame coal areas were made.展开更多
We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluat...We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.展开更多
This paper offers preliminary work on system dynamics and Data mining tools. It tries to understand the dynamics of carrying out large-scale events, such as Hajj. The study looks at a large, recurring problem as a var...This paper offers preliminary work on system dynamics and Data mining tools. It tries to understand the dynamics of carrying out large-scale events, such as Hajj. The study looks at a large, recurring problem as a variable to consider, such as how the flow of people changes over time as well as how location interacts with placement. The predicted data is analyzed using Vensim PLE 32 modeling software, GIS Arc Map 10.2.1, and AnyLogic 7.3.1 software regarding the potential placement of temporal service points, taking into consideration the three dynamic constraints and behavioral aspects: a large population, limitation in time, and space. This research proposes appropriate data analyses to ensure the optimal positioning of the service points with limited time and space for large-scale events. The conceptual framework would be the output of this study. Knowledge may be added to the insights based on the technique.展开更多
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11873013)。
文摘The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph).
基金The work presented in this paper was financially jointly supported by General Project of the National Natural Science Foundation of China(No.52074145)Liaoning Revitalization Talents Program(No.XLYC2002110).
文摘In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was(486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%.The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test(SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 k N, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for+425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways.
文摘Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.
文摘The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth composite Green function is employed to develop a program for the computation of the hydrodynamic coefficients of the very large FPSO at shallow water. A three-segment model with 1∶100 scale is tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the verification of the numerical method. The experimental and computational results show that the water depth has a substantial effect on wave-induced loads. The wave-induced vertical loads increase with the decrease of water depth for shallow water. Especially, for ultra-shallow water these loads increase very evidently with the decrease of water depth. The long-term prediction values of wave-induced vertical loads increase with the decrease of the ratio of water depth to draught. The long-term prediction values of wave-induced vertical loads are about 8% larger than those for deep water when the ratio of water depth to draught is 3.0. However, water depth hardly affects the long-term prediction values of wave-induced loads when the ratio of water depth to draught is larger than 5.0.
基金Acknowledgments This work is supported by the National Nature Science Foundation of China (51374011).
文摘According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.
基金Sponsored by the Outstanding Youth Scientific Fund of Henan Province(Grant No.04120002300)Program for Innovation in University of Henan Province(Grant No.[2004]294)
文摘In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.
基金Project 50774079 supported by the National Natural Science Foundation of China
文摘Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change of the caving window location and dimensions and, therefore, the granular coal-gangue movement and flows provide new characteristics during top coal caving. The main inferences we draw are as follows. Firstly, after shifting the supports, the caved top coal layer line and the coal gangue boundary line become steeper and are clearly larger than those under common mining heights. Secondly, during the top coal caving procedure, the speed of the coal-gangue flow increases and at the same drawing interval, the distance between the coal-gangue boundary line and the top beam end is reduced. Thirdly, affected by the drawing ratio, the slope angle of the shield beam and the dimensions of the caving window, it is easy to mix the gangue. A rational drawing interval will cause the coal-gangue boundary line to be slightly behind the down tail boom lower boundary. This rational drawing interval under conditions of large mining heights has been analyzed and determined.
基金Project(51174192)supported by the National Natural Science Foundation of ChinaProject(BRA2010024)supported by "333" Training Foundation of Jiangsu Province,China+2 种基金Projects(2011QNB03,2014ZDPY21,2014QNB30)supported by the Fundamental Research Funds for the Central Universities,ChinaProject Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(2015M581896)supported by China Postdoctoral Science Foundation
文摘The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.
基金funded by the United Foundation key project fund,Chinese Natural Science Committee (No.U1261207)Datong Coal Group,Tashan Coal Mine,and supported by the Natural Science Foundation of Ningbo of China (No.U1261207)
文摘Coal seams in Tashan Mine of Datong Coal Group in China average 15 m thick and have been mined by the top coal caving longwall mining method of large mining height. Mining height was 3.8 m and the top coal caving height was 11.2 m. The gateroad pillar between panels was 38 m. During retreat mining,serious bumps occurred in the gateroads on both sides of the pillar affecting safety production. Therefore,pillarless mining was experimented. Using numerical modeling and comparative study of cases of similar mining condition,it was decided to employ a 6 m wide pillar,rather than the previous 38 m wide pillar.Support system for the gateroads was designed and implemented. During gateroad development,pillar failure conditions and entry deformation were monitored. Hydraulic fracturing method was employed to cut off the K3 sandstone along the entry rib so as to reduce the abutment pressure induced during retreat mining. Support reinforcement method combining grouting and advanced reinforcement methods was proposed to insure stable gateroad ahead of mining. Methane drainage and nitrogen injection were implemented to eliminate hazards associated with mine fire and spontaneous combustion. Since the development of gateroad has just completed,and retreat mining has not begun,the effectiveness of the proposed methods is unknown at this point. However,monitoring will continue until after mining.The results will be published in a separate paper.
基金Supported by the Goverment of Malaysia,Intensified Research in Priority Areas(IRPA Project)(No.50258-J3)
文摘We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of species richness,abundance,diversity and cell density.In regression analysis,all these algal attributes were negatively correlated with the depth gradients at P<0.05.In terms of species richness,the bacillariophytes showed dominance over the cyanophytes and chlorophytes;whereas with respect to standing crop,the cyanophytes showed dominance over the bacillariophytes and chlorophytes.The chlorophyll a was higher at the mid and bottom-depths than the surface-depth in both the downstream and upstream sites,which showed that vertical productivity or biomass accumulation was greater in low light irradiance.The product-moment correlation analysis showed that conductivity,turbidity,dissolved oxygen,reactive phosphate and ammonium-nitrogen were highly correlated with the algal assemblage data.However,photosynthetic active radiation(PAR) showed poor correlation with the community data.These observations have cast some light on the autoecological characteristics,habitat preferences and environmental responses of tropical periphytic communities.
基金Supported by National Natural Science Fundation of China(50674045)
文摘Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.
基金supported by the NSFC HSR Fundamental Research Joint Fund (Grant No.U1934213)。
文摘Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.
文摘Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order to improve the top-coal recovery ratio of fully mechanized cave mining with large mining height, a study was conducted on optimizing the caving process, based on the mechanized caving face 1302N in Longgu Coal Mine. This was achieved by improving the PFC numerical calculation methods, and establishing a more accurate model system. On this basis, the recovery ratio of the top coal in different drawing intervals and technologies was investigated in order to achieve a reasonable caving process. The top-coal tracking system was used for practical surveying of the recovery ratio of top coal.
文摘Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-width ratio, a theoretical model is established with the coupling of Navier-Stokes (N-S)~ sediment transport, and bed deformation equations. The flow characteristics and bed response of river are obtained with the perturbation method. The research results show that, under the effect of two- dimensional flow disturbance, the bars and pools present the regular response. For a given sinuousness, the amplitude of the bed response can be used as a criterion to judge the bedform stability. The effects of the Reynolds number, disturbance wavenumber, sinuousness, and bed morphology gradient on the bed response development are described.
文摘In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.
基金National High-Tech Research and Development Program(863 Program),China(No.2012AA062001)
文摘In the design of large mining excavator electrical system,a practical reliability allocation method was introduced to allocate system level reliability requirements into subsystem and component levels. During the reliability allocation process,factors from the fault and maintenance data were only considered in reliability allocation scheme. It could avoid the disturbance from expert experiences. The entropy method was also used to obtain weights of reliability allocation indexes of large mining excavators considering different factors. Then the failure rate allocation of subsystems and components could be completed.
基金Supported by Ministry of Education Doctoral Foundation (20070460001)Natural Science Foundation of Henan Province (0623021400)
文摘Based on simulated material scale modeling and numerical simulation, the protective seam mining method was conducted at one coal mine. After extracting the No.15seam, the overlying strata movement and the deformation of the No.9-10 protected seamwere studied. The experiment results show that it is feasible to destress the protectedseams with large interburden thickness. When the face had advanced 200 m from thesetup room, the No.9-10 seam was fully destressed, resulting in easy gas drainage in thedestressed zone. Recommendations on mining sequence of multiple seams mining in thesame coal areas were made.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436211 and 11204086the National Basic Research Program of China under Grant No 2011CB921604the Shanghai Science and Technology Committee under Grant No 13PJ1402100
文摘We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.
文摘This paper offers preliminary work on system dynamics and Data mining tools. It tries to understand the dynamics of carrying out large-scale events, such as Hajj. The study looks at a large, recurring problem as a variable to consider, such as how the flow of people changes over time as well as how location interacts with placement. The predicted data is analyzed using Vensim PLE 32 modeling software, GIS Arc Map 10.2.1, and AnyLogic 7.3.1 software regarding the potential placement of temporal service points, taking into consideration the three dynamic constraints and behavioral aspects: a large population, limitation in time, and space. This research proposes appropriate data analyses to ensure the optimal positioning of the service points with limited time and space for large-scale events. The conceptual framework would be the output of this study. Knowledge may be added to the insights based on the technique.