The influence of mercerization on cotton varieties from Africa,Xinjiang and Australia was studied. The micro-morphology,mechanical property and crystalline structure were analyzed before and after mercerization. Merce...The influence of mercerization on cotton varieties from Africa,Xinjiang and Australia was studied. The micro-morphology,mechanical property and crystalline structure were analyzed before and after mercerization. Mercerization made the surface of fibers smoother which resulted in improved luster of fiberes with better results observed in Australia,Xinjiang and Africa cotton varieties respectively. Although fiber strenth increased due to orientation of intra fiber cellulose chains,there was a general in the crystallinity index amongst the three varieties of cotton after mercerization.Reduced crystallinity is a function of improved processability and thus Australian cotton is more processable than cotton from Africa and Xinjiang.展开更多
The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrm...The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.展开更多
A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional...A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional feature space through the nonlinear transformation. Among other fuzzy c-means and its variants, the number of clusters is first determined. A self-adaptive algorithm is proposed. The number of clusters, which is not given in advance, can be gotten automatically by a validity measure function. Finally, experiments are given to show better performance with the method of kernel based fuzzy c-means self-adaptive algorithm.展开更多
Classification model has received great attention in any domain of research and also a reliable tool for medical disease diagnosis. The domain of classification model is used in disease diagnosis, disease prediction, ...Classification model has received great attention in any domain of research and also a reliable tool for medical disease diagnosis. The domain of classification model is used in disease diagnosis, disease prediction, bio informatics, crime prediction and so on. However, an efficient disease diagnosis model was compromised the disease prediction. In this paper, a Rough Set Rule-based Multitude Classifier (RS-RMC) is developed to improve the disease prediction rate and enhance the class accuracy of disease being diagnosed. The RS-RMC involves two steps. Initially, a Rough Set model is used for Feature Selection aiming at minimizing the execution time for obtaining the disease feature set. A Multitude Classifier model is presented in second step for detection of heart disease and for efficient classification. The Na?ve Bayes Classifier algorithm is designed for efficient identification of classes to measure the relationship between disease features and improving disease prediction rate. Experimental analysis shows that RS-RMC is used to reduce the execution time for extracting the disease feature with minimum false positive rate compared to the state-of-the-art works.展开更多
文摘The influence of mercerization on cotton varieties from Africa,Xinjiang and Australia was studied. The micro-morphology,mechanical property and crystalline structure were analyzed before and after mercerization. Mercerization made the surface of fibers smoother which resulted in improved luster of fiberes with better results observed in Australia,Xinjiang and Africa cotton varieties respectively. Although fiber strenth increased due to orientation of intra fiber cellulose chains,there was a general in the crystallinity index amongst the three varieties of cotton after mercerization.Reduced crystallinity is a function of improved processability and thus Australian cotton is more processable than cotton from Africa and Xinjiang.
基金Supported by the Science Foundation of Zhejiang Province(Y604003)
文摘The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.
文摘A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional feature space through the nonlinear transformation. Among other fuzzy c-means and its variants, the number of clusters is first determined. A self-adaptive algorithm is proposed. The number of clusters, which is not given in advance, can be gotten automatically by a validity measure function. Finally, experiments are given to show better performance with the method of kernel based fuzzy c-means self-adaptive algorithm.
文摘Classification model has received great attention in any domain of research and also a reliable tool for medical disease diagnosis. The domain of classification model is used in disease diagnosis, disease prediction, bio informatics, crime prediction and so on. However, an efficient disease diagnosis model was compromised the disease prediction. In this paper, a Rough Set Rule-based Multitude Classifier (RS-RMC) is developed to improve the disease prediction rate and enhance the class accuracy of disease being diagnosed. The RS-RMC involves two steps. Initially, a Rough Set model is used for Feature Selection aiming at minimizing the execution time for obtaining the disease feature set. A Multitude Classifier model is presented in second step for detection of heart disease and for efficient classification. The Na?ve Bayes Classifier algorithm is designed for efficient identification of classes to measure the relationship between disease features and improving disease prediction rate. Experimental analysis shows that RS-RMC is used to reduce the execution time for extracting the disease feature with minimum false positive rate compared to the state-of-the-art works.