This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Vi...This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Visual analytics were used to examine the impact of various climate change indicators on different aspects of human development. The study highlights the urgent need for climate change action and encourages policymakers to make decisive moves. Climate change adversely affects numerous aspects of daily life, leading to significant consequences that must be addressed through policy changes and global governance recommendations. Key findings include that regions with higher CO2 emissions experience a significantly higher incidence of life-threatening diseases compared to regions with lower emissions. Additionally, higher CO2 emissions correlate with consistent death rates. Increased pollution exposure is associated with a higher prevalence of life-threatening diseases and higher rates of malnutrition. Moreover, greater mineral depletion is linked to more frequent life-threatening diseases, suggesting that industrialization contributes to adverse health effects. These results provide valuable insights for policy and decision-making aimed at mitigating the impact of climate change on human development.展开更多
In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect ...In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network.The technique can help answer questions,such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output.Our visual analytics approach comprises several components:First,our input visualization shows the input sequence and how it relates to the output(using color coding).In addition,hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states.Trajectories are also employed to show the details of the evolution of the hidden state configurations.Finally,a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers,and a histogram indicates the distances between the hidden states within the original space.The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences.To demonstrate the capability of our approach,we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for ind...The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for individuals with visual impairments.The modular approach implemented in this research allows for a seamless flow of information and assistance between the different components of the system.This research significantly contributes to the field of accessibility technology by integrating computer vision,natural language processing,and voice technologies.By leveraging these advancements,the developed system offers a practical and efficient solution for assisting blind individuals.The modular design ensures flexibility,scalability,and ease of integration with existing assistive technologies.However,it is important to acknowledge that further research and improvements are necessary to enhance the system’s accuracy and usability.Fine-tuning the CNN models and expanding the training dataset can improve eye and face detection as well as eye classification capabilities.Additionally,incorporating real-time responses through sophisticated natural language understanding techniques and expanding the knowledge base of ChatGPT can enhance the system’s ability to provide comprehensive and accurate responses.Overall,this research paves the way for the development of more advanced and robust systems for assisting visually impaired individuals.By leveraging cutting-edge technologies and integrating them into amodular framework,this research contributes to creating a more inclusive and accessible society for individuals with visual impairments.Future work can focus on refining the system,addressing its limitations,and conducting user studies to evaluate its effectiveness and impact in real-world scenarios.展开更多
This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are d...This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are distributed over a position spectrum. We generalize the concept of position in the model to incorporate continuous positions for the actors, enabling them to have more flexibility in defining their targets. We explore different possible functions to study the role of the position function and discuss appropriate distance measures for computing the distance between the positions of actors. To validate the proposed extension, we demonstrate the trustworthiness of our model’s performance and interpretation by replicating the results based on data used in earlier studies.展开更多
Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Sma...Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Small and medium sized enterprises(SMEs)are the backbone of the global economy,comprising of 90%of businesses worldwide.However,only 10%SMEs have adopted big data analytics despite the competitive advantage they could achieve.Previous research has analysed the barriers to adoption and a strategic framework has been developed to help SMEs adopt big data analytics.The framework was converted into a scoring tool which has been applied to multiple case studies of SMEs in the UK.This paper documents the process of evaluating the framework based on the structured feedback from a focus group composed of experienced practitioners.The results of the evaluation are presented with a discussion on the results,and the paper concludes with recommendations to improve the scoring tool based on the proposed framework.The research demonstrates that this positioning tool is beneficial for SMEs to achieve competitive advantages by increasing the application of business intelligence and big data analytics.展开更多
Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computin...Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computing and application in edge devices lead to emerging of two new concepts in edge technology:edge computing and edge analytics.Edge analytics uses some techniques or algorithms to analyse the data generated by the edge devices.With the emerging of edge analytics,the edge devices have become a complete set.Currently,edge analytics is unable to provide full support to the analytic techniques.The edge devices cannot execute advanced and sophisticated analytic algorithms following various constraints such as limited power supply,small memory size,limited resources,etc.This article aims to provide a detailed discussion on edge analytics.The key contributions of the paper are as follows-a clear explanation to distinguish between the three concepts of edge technology:edge devices,edge computing,and edge analytics,along with their issues.In addition,the article discusses the implementation of edge analytics to solve many problems and applications in various areas such as retail,agriculture,industry,and healthcare.Moreover,the research papers of the state-of-the-art edge analytics are rigorously reviewed in this article to explore the existing issues,emerging challenges,research opportunities and their directions,and applications.展开更多
Online question and answer(Q&A)communities,which allow users to exchange knowledge by asking and answering questions,have become increasingly popular.As a result of user active participation,these communities stor...Online question and answer(Q&A)communities,which allow users to exchange knowledge by asking and answering questions,have become increasingly popular.As a result of user active participation,these communities store overwhelming volumes of information.However,existing related methods are unable to meet community operators’needs for analyzing multi-dimensional Q&A sequences and understanding user behavior.In this paper,collaborating with domain experts in online community,we present a system,VisQAC,which explores the patterns of Q&A sequence and user behavior.In the system,a novel visual design is proposed,which is combined with flexible mapping measures for analyzing critical characteristics of sequence data.Moreover,a timeline visualization method is designed to visualize data with categorical attributes and its correlation can be displayed flexibly by choosing time mode and time granularity.The usefulness and effectiveness of the system are demonstrated with several case studies of VisQAC with community operators based on the Zhihu dataset.Our evaluation shows that VisQAC is beneficial to the understanding of Q&A sequence and associated user behavior.展开更多
This study explores the integration of predictive analytics in strategic corporate communications, with a specific focus on stakeholder engagement and crisis management. Our mixed-methods approach, which combines a co...This study explores the integration of predictive analytics in strategic corporate communications, with a specific focus on stakeholder engagement and crisis management. Our mixed-methods approach, which combines a comprehensive literature review with case studies of five multinational corporations, allows us to investigate the applications, challenges, and ethical implications of leveraging predictive models in communication strategies. While our findings reveal significant potential for enhancing personalized content delivery, real-time sentiment analysis, and proactive crisis management, we stress the need for careful consideration of challenges such as data privacy concerns and algorithmic bias. This emphasis on ethical implementation is crucial in navigating the complex landscape of predictive analytics in corporate communications. To address these issues, we propose a framework that prioritizes ethical considerations. Furthermore, we identify key areas for future research, thereby contributing to the evolving field of data-driven communication management.展开更多
The year 2024 marks the 60^(th)anniversary of Title IX and 25 years since the New York Times revealed bias against female faculty members at the Massachusetts Institute of Technology.We take an opportunity here to exa...The year 2024 marks the 60^(th)anniversary of Title IX and 25 years since the New York Times revealed bias against female faculty members at the Massachusetts Institute of Technology.We take an opportunity here to examine the state of gender bias in a relatively new yet already prominent field,neural regeneration in the visual system,for which there is a well-defined context useful for this purpose.The National Eye Institute(NEI)provided the first round of research funding for its Audacious Goals Initiative(AGI)on visual neural regeneration in 2013 and the last round in 2021.Therefore,we focus on this timespan.Data sources included PubMed,the National Science Foundation(NSF),the NEI,the Blue Ridge Institute for Medical Research and data from the major professional organization for eye and vision research,the Association for Research in Vision and Ophthalmology(ARVO).展开更多
Data flow diagram(DFD),as a special kind of data,is a design artifact in both requirement analysis and structured analysis in software development.However,rigorous analysis of DFD requires a formal semantics.Formal re...Data flow diagram(DFD),as a special kind of data,is a design artifact in both requirement analysis and structured analysis in software development.However,rigorous analysis of DFD requires a formal semantics.Formal representation of DFD and its formal semantics will help to reduce inconsistencies and confusion.The logical structure of DFD can be described using formalism of Calculus of Communicating System(CCS).With a finite number of states based on CCS,state space methods will help a lot in analysis and verification of the behavior of the systems.But the number of states of even a relatively small system is often very great that is called state explosion.In this paper,we present a visual system which combines Formal methods and visualization techniques so as to help the researchers to understand and analyze the system described by the DFD regardless of the problem of state explosion.展开更多
文摘This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Visual analytics were used to examine the impact of various climate change indicators on different aspects of human development. The study highlights the urgent need for climate change action and encourages policymakers to make decisive moves. Climate change adversely affects numerous aspects of daily life, leading to significant consequences that must be addressed through policy changes and global governance recommendations. Key findings include that regions with higher CO2 emissions experience a significantly higher incidence of life-threatening diseases compared to regions with lower emissions. Additionally, higher CO2 emissions correlate with consistent death rates. Increased pollution exposure is associated with a higher prevalence of life-threatening diseases and higher rates of malnutrition. Moreover, greater mineral depletion is linked to more frequent life-threatening diseases, suggesting that industrialization contributes to adverse health effects. These results provide valuable insights for policy and decision-making aimed at mitigating the impact of climate change on human development.
基金Funded by the Deutsche Forschungsgemeinschaft(German Research Foundation),No.251654672—TRR 161(Project B01)Germany’s Excellence Strategy,No.EXC-2075—390740016.
文摘In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network.The technique can help answer questions,such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output.Our visual analytics approach comprises several components:First,our input visualization shows the input sequence and how it relates to the output(using color coding).In addition,hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states.Trajectories are also employed to show the details of the evolution of the hidden state configurations.Finally,a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers,and a histogram indicates the distances between the hidden states within the original space.The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences.To demonstrate the capability of our approach,we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
文摘The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for individuals with visual impairments.The modular approach implemented in this research allows for a seamless flow of information and assistance between the different components of the system.This research significantly contributes to the field of accessibility technology by integrating computer vision,natural language processing,and voice technologies.By leveraging these advancements,the developed system offers a practical and efficient solution for assisting blind individuals.The modular design ensures flexibility,scalability,and ease of integration with existing assistive technologies.However,it is important to acknowledge that further research and improvements are necessary to enhance the system’s accuracy and usability.Fine-tuning the CNN models and expanding the training dataset can improve eye and face detection as well as eye classification capabilities.Additionally,incorporating real-time responses through sophisticated natural language understanding techniques and expanding the knowledge base of ChatGPT can enhance the system’s ability to provide comprehensive and accurate responses.Overall,this research paves the way for the development of more advanced and robust systems for assisting visually impaired individuals.By leveraging cutting-edge technologies and integrating them into amodular framework,this research contributes to creating a more inclusive and accessible society for individuals with visual impairments.Future work can focus on refining the system,addressing its limitations,and conducting user studies to evaluate its effectiveness and impact in real-world scenarios.
文摘This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are distributed over a position spectrum. We generalize the concept of position in the model to incorporate continuous positions for the actors, enabling them to have more flexibility in defining their targets. We explore different possible functions to study the role of the position function and discuss appropriate distance measures for computing the distance between the positions of actors. To validate the proposed extension, we demonstrate the trustworthiness of our model’s performance and interpretation by replicating the results based on data used in earlier studies.
文摘Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Small and medium sized enterprises(SMEs)are the backbone of the global economy,comprising of 90%of businesses worldwide.However,only 10%SMEs have adopted big data analytics despite the competitive advantage they could achieve.Previous research has analysed the barriers to adoption and a strategic framework has been developed to help SMEs adopt big data analytics.The framework was converted into a scoring tool which has been applied to multiple case studies of SMEs in the UK.This paper documents the process of evaluating the framework based on the structured feedback from a focus group composed of experienced practitioners.The results of the evaluation are presented with a discussion on the results,and the paper concludes with recommendations to improve the scoring tool based on the proposed framework.The research demonstrates that this positioning tool is beneficial for SMEs to achieve competitive advantages by increasing the application of business intelligence and big data analytics.
文摘Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computing and application in edge devices lead to emerging of two new concepts in edge technology:edge computing and edge analytics.Edge analytics uses some techniques or algorithms to analyse the data generated by the edge devices.With the emerging of edge analytics,the edge devices have become a complete set.Currently,edge analytics is unable to provide full support to the analytic techniques.The edge devices cannot execute advanced and sophisticated analytic algorithms following various constraints such as limited power supply,small memory size,limited resources,etc.This article aims to provide a detailed discussion on edge analytics.The key contributions of the paper are as follows-a clear explanation to distinguish between the three concepts of edge technology:edge devices,edge computing,and edge analytics,along with their issues.In addition,the article discusses the implementation of edge analytics to solve many problems and applications in various areas such as retail,agriculture,industry,and healthcare.Moreover,the research papers of the state-of-the-art edge analytics are rigorously reviewed in this article to explore the existing issues,emerging challenges,research opportunities and their directions,and applications.
基金Supported by Major Development Program of Sichuan Province(18ZDYF1790)Key Technology R&D Program of Chengdu City(2015-HM01-00484-SF)the National Science and Technology Major Project(2018ZX100201AA-002-004)
文摘Online question and answer(Q&A)communities,which allow users to exchange knowledge by asking and answering questions,have become increasingly popular.As a result of user active participation,these communities store overwhelming volumes of information.However,existing related methods are unable to meet community operators’needs for analyzing multi-dimensional Q&A sequences and understanding user behavior.In this paper,collaborating with domain experts in online community,we present a system,VisQAC,which explores the patterns of Q&A sequence and user behavior.In the system,a novel visual design is proposed,which is combined with flexible mapping measures for analyzing critical characteristics of sequence data.Moreover,a timeline visualization method is designed to visualize data with categorical attributes and its correlation can be displayed flexibly by choosing time mode and time granularity.The usefulness and effectiveness of the system are demonstrated with several case studies of VisQAC with community operators based on the Zhihu dataset.Our evaluation shows that VisQAC is beneficial to the understanding of Q&A sequence and associated user behavior.
文摘This study explores the integration of predictive analytics in strategic corporate communications, with a specific focus on stakeholder engagement and crisis management. Our mixed-methods approach, which combines a comprehensive literature review with case studies of five multinational corporations, allows us to investigate the applications, challenges, and ethical implications of leveraging predictive models in communication strategies. While our findings reveal significant potential for enhancing personalized content delivery, real-time sentiment analysis, and proactive crisis management, we stress the need for careful consideration of challenges such as data privacy concerns and algorithmic bias. This emphasis on ethical implementation is crucial in navigating the complex landscape of predictive analytics in corporate communications. To address these issues, we propose a framework that prioritizes ethical considerations. Furthermore, we identify key areas for future research, thereby contributing to the evolving field of data-driven communication management.
文摘The year 2024 marks the 60^(th)anniversary of Title IX and 25 years since the New York Times revealed bias against female faculty members at the Massachusetts Institute of Technology.We take an opportunity here to examine the state of gender bias in a relatively new yet already prominent field,neural regeneration in the visual system,for which there is a well-defined context useful for this purpose.The National Eye Institute(NEI)provided the first round of research funding for its Audacious Goals Initiative(AGI)on visual neural regeneration in 2013 and the last round in 2021.Therefore,we focus on this timespan.Data sources included PubMed,the National Science Foundation(NSF),the NEI,the Blue Ridge Institute for Medical Research and data from the major professional organization for eye and vision research,the Association for Research in Vision and Ophthalmology(ARVO).
文摘Data flow diagram(DFD),as a special kind of data,is a design artifact in both requirement analysis and structured analysis in software development.However,rigorous analysis of DFD requires a formal semantics.Formal representation of DFD and its formal semantics will help to reduce inconsistencies and confusion.The logical structure of DFD can be described using formalism of Calculus of Communicating System(CCS).With a finite number of states based on CCS,state space methods will help a lot in analysis and verification of the behavior of the systems.But the number of states of even a relatively small system is often very great that is called state explosion.In this paper,we present a visual system which combines Formal methods and visualization techniques so as to help the researchers to understand and analyze the system described by the DFD regardless of the problem of state explosion.