An epidural blood patch (EBP) is a procedure performed by injecting autologous blood into a patient’s epidural space, usually at the site of a suspected CSF leak. It is typically performed in patients with characteri...An epidural blood patch (EBP) is a procedure performed by injecting autologous blood into a patient’s epidural space, usually at the site of a suspected CSF leak. It is typically performed in patients with characteristic postural headaches due to low intracranial pressure. We report a case of a young female with an implanted Miethke Sensor Reservoir, which was used for continuous intracranial pressure (ICP) monitoring during a two-level epidural blood patch. ICP increased only with thoracic injection, suggesting thoracic EBP may have greater efficacy than lumbar EBP in treating SIH and PDPH when the site of CSF leak is unknown.展开更多
Objective:To explore the effect of continuous non-invasive blood pressure monitoring on intraoperative hemodynamics and postoperative myocardial injury in craniotomy.Methods:120 cases of elective craniotomy were divid...Objective:To explore the effect of continuous non-invasive blood pressure monitoring on intraoperative hemodynamics and postoperative myocardial injury in craniotomy.Methods:120 cases of elective craniotomy were divided into the self-control group(continuous non-invasive blood pressure monitoring and intermittent cuff non-invasive blood pressure monitoring,CNAP group)and propensity score matching group(only intermittent cuff non-invasive blood pressure measurement in previous craniotomy,PSM group);Goal-directed hemodynamic management in CNAP group included heart rate(HR),blood pressure(BP),stroke volume(SV),stroke variability(SVV),and systemic vascular resistance index(SVRI).The main index is to compare the troponin level within 72 hours after operation between the CNAP group and the PSM group;The secondary indicators are the comparison of the hemodynamic conditions between the CNAP group and the PSM at 10 specific time points.Results:The incidence of postoperative myocardial injury in the CNAP group was significantly lower than that in the PSM group(12%vs.30%,P=0.01);in the CNAP group hypotensive episodes(6 vs.3,P=0.01),positive balance of fluid therapy(700 vs.500 mL,P<0.001),more use of vasoactive drugs(29 vs.18,P=0.04),more stable hemodynamics medical status(P=0.03)were recorded.Conclusion:The hemodynamic management strategy based on continuous non-invasive blood pressure monitoring can reduce the incidence of myocardial injury after elective craniotomy and maintain a more stable hemodynamic state.展开更多
This study aims to confirm whether noncontact monitoring of relative changes in blood pressure can be estimated using microwave radar sensors. First, an equation to estimate blood pressure was derived, after which, th...This study aims to confirm whether noncontact monitoring of relative changes in blood pressure can be estimated using microwave radar sensors. First, an equation to estimate blood pressure was derived, after which, the effectiveness of the estimation equation was confirmed using data obtained by a noncontact method while inducing variations in blood pressure. We considered that the Bramwell-Hill equation, which contains some parameters that directly indicate changes in blood pressure, would be an appropriate reference to construct an estimation equation for the noncontact method, because measurements using microwave radar sensors can measure minute scale motion on the skin surface induced by the pulsation of blood vessels. In order to estimate relative changes in blood pressure, we considered a simple equation including the pulse transit time (PTT), amplitude of signals and body dimensions as parameters. To verify the effectiveness of the equation for estimating changes in blood pressure, two experiments were conducted: a cycling task using an ergometer, which induces blood pressure fluctuations because of changes in cardiac output, and a task using the Valsalva maneuver, which induces blood pressure fluctuations because of changes in vascular resistance. The results obtained from the two experiments suggested that the proposed equation using microwave radar sensors can accurately estimate relative changes of blood pressure. In particular, relatively favorable results were obtained for the changes in blood pressure induced by the changes in cardiac volume. Although many issues remain, this method could be expected to contribute to the continuous evaluation of cardiac function while reducing the burden on patients.展开更多
Objective:To analyze the correlation of the relative parameters of intracranial pressure to the prognosis in patients with craniocerebral injury.Methods:The clinical data of 80 patients with closed craniocerebral inju...Objective:To analyze the correlation of the relative parameters of intracranial pressure to the prognosis in patients with craniocerebral injury.Methods:The clinical data of 80 patients with closed craniocerebral injury were retrospectively analyzed,and all of these patients underwent conventional examinations of arterial blood pressure and intracranial pressure.Neumatic DCR system was used to monitor relative parameters of intracranial pressure from patients.According to the score of Glasgow outcome scale(GOS)upon discharge,they were divided into favorable prognosis group(GOSⅢ-Ⅴ,n=46)and unfavorable prognosis group(GOSⅠ-Ⅱ,n=34).The relative parameters of intracranial pressure of two groups were compared so as to analyze the correlation of the prognosis in patients to ICP-related parameters.Results:Pressure reactivity index(PRx)and intracranial pressure(ICP)of favorable prognosis group were significantly higher than those of unfavorable prognosis group(t=12.27,t=5.22,p<0.05).Meanwhile,cerebral perfusion pressure(CPP)and ICP-ABP wave amplitude correlation(IAAC)of favorable prognosis group were significantly lower than those of unfavorable prognosis group(t=14.54,t=14.78,p<0.05).The average age,gender,duration of admission to neurosurgical intensive care unit(NICU)and GCS(Glasgow coma scale)score on admission of the two groups were not statistically significant.Conclusions:The prognosis and ICP-related parameters(such as PRx,ICP,CPP,etc.)in patients with craniocerebral injury are risk factors for the prognosis effect.Therefore,to monitor the above-mentioned indicators has an important clinical value for assessing the prognosis of craniocerebral injury.展开更多
Background Patients with acute brain injury(ABI)are a peculiar population because ABI does not only affect the brain but also other organs such as the lungs,as theorized in brain–lung crosstalk models.ABI patients of...Background Patients with acute brain injury(ABI)are a peculiar population because ABI does not only affect the brain but also other organs such as the lungs,as theorized in brain–lung crosstalk models.ABI patients often require mechanical ventilation(MV)to avoid the complications of impaired respiratory function that can follow ABI;MV should be settled with meticulousness owing to its effects on the intracranial compartment,especially regarding positive end-expiratory pressure(PEEP).This scoping review aimed to(1)describe the physiological basis and mechanisms related to the effects of PEEP in ABI;(2)examine how clinical research is conducted on this topic;(3)identify methods for setting PEEP in ABI;and(4)investigate the impact of the application of PEEP in ABI on the outcome.Methods The five-stage paradigm devised by Peters et al.and expanded by Arksey and O'Malley,Levac et al.,and the Joanna Briggs Institute was used for methodology.We also adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)extension criteria.Inclusion criteria:we compiled all scientific data from peer-reviewed journals and studies that discussed the application of PEEP and its impact on intracranial pressure,cerebral perfusion pressure,and brain oxygenation in adult patients with ABI.Exclusion criteria:studies that only examined a pediatric patient group(those under the age of 18),experiments conducted solely on animals;studies without intracranial pressure and/or cerebral perfusion pressure determinations,and studies with incomplete information.Two authors searched and screened for inclusion in papers published up to July 2023 using the PubMed-indexed online database.Data were presented in narrative and tubular form.Results The initial search yielded 330 references on the application of PEEP in ABI,of which 36 met our inclusion criteria.PEEP has recognized beneficial effects on gas exchange,but it produces hemodynamic changes that should be predicted to avoid undesired consequences on cerebral blood flow and intracranial pressure.Moreover,the elastic properties of the lungs influence the transmission of the forces applied by MV over the brain so they should be taken into consideration.Currently,there are no specific tools that can predict the effect of PEEP on the brain,but there is an established need for a comprehensive monitoring approach for these patients,acknowledging the etiology of ABI and the measurable variables to personalize MV.Conclusion PEEP can be safely used in patients with ABI to improve gas exchange keeping in mind its potentially harmful effects,which can be predicted with adequate monitoring supported by bedside non-invasive neuromonitoring tools.展开更多
Intraocular pressure(IOP)is a key clinical parameter in glaucoma management.However,despite the potential utility of daily measurements of IOP in the context of disease management,the necessary tools are currently lac...Intraocular pressure(IOP)is a key clinical parameter in glaucoma management.However,despite the potential utility of daily measurements of IOP in the context of disease management,the necessary tools are currently lacking,and IOP is typically measured only a few times a year.Here we report on a microscale implantable sensor that could provide convenient,accurate,ondemand IOP monitoring in the home environment.When excited by broadband near-infrared(NIR)light from a tungsten bulb,the sensor’s optical cavity reflects a pressure-dependent resonance signature that can be converted to IOP.NIR light is minimally absorbed by tissue and is not perceived visually.The sensor’s nanodot-enhanced cavity allows for a 3–5 cm readout distance with an average accuracy of 0.29 mm Hg over the range of 0–40 mm Hg.Sensors were mounted onto intraocular lenses or silicone haptics and secured inside the anterior chamber in New Zealand white rabbits.Implanted sensors provided continuous in vivo tracking of short-term transient IOP elevations and provided continuous measurements of IOP for up to 4.5 months.展开更多
目的探讨经桡动脉入路脑血管造影中持续动脉压监测在发现导管扭转打结中的作用。方法回顾性分析2017年7月至2019年12月接受经桡动脉入路脑血管造影的116例缺血性脑血管病患者的临床病例资料,其中80例造影过程中接受持续动脉压监测(测压...目的探讨经桡动脉入路脑血管造影中持续动脉压监测在发现导管扭转打结中的作用。方法回顾性分析2017年7月至2019年12月接受经桡动脉入路脑血管造影的116例缺血性脑血管病患者的临床病例资料,其中80例造影过程中接受持续动脉压监测(测压组),另36例作为无测压组。在操作过程中,动脉压力差变小甚至曲线变平提示导管某段发生扭转打结。比较两组患者的性别、年龄、主动脉弓型等基本临床病例信息,手术适应证、透视时间、手术时间,以及造影过程中导管扭转打结发生率。结果两组患者性别、年龄、主动脉弓型、透视时间、手术时间差异均无统计学意义。测压组动脉导管扭转打结发生率低于无测压组(0 vs 8.33%,P=0.047)。结论持续动脉压力监测有助于发现早期桡动脉入路脑血管造影过程中导管扭转打结,进而降低相关并发症的发生,值得推广应用。展开更多
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP...目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。展开更多
BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic n...BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.展开更多
文摘An epidural blood patch (EBP) is a procedure performed by injecting autologous blood into a patient’s epidural space, usually at the site of a suspected CSF leak. It is typically performed in patients with characteristic postural headaches due to low intracranial pressure. We report a case of a young female with an implanted Miethke Sensor Reservoir, which was used for continuous intracranial pressure (ICP) monitoring during a two-level epidural blood patch. ICP increased only with thoracic injection, suggesting thoracic EBP may have greater efficacy than lumbar EBP in treating SIH and PDPH when the site of CSF leak is unknown.
文摘Objective:To explore the effect of continuous non-invasive blood pressure monitoring on intraoperative hemodynamics and postoperative myocardial injury in craniotomy.Methods:120 cases of elective craniotomy were divided into the self-control group(continuous non-invasive blood pressure monitoring and intermittent cuff non-invasive blood pressure monitoring,CNAP group)and propensity score matching group(only intermittent cuff non-invasive blood pressure measurement in previous craniotomy,PSM group);Goal-directed hemodynamic management in CNAP group included heart rate(HR),blood pressure(BP),stroke volume(SV),stroke variability(SVV),and systemic vascular resistance index(SVRI).The main index is to compare the troponin level within 72 hours after operation between the CNAP group and the PSM group;The secondary indicators are the comparison of the hemodynamic conditions between the CNAP group and the PSM at 10 specific time points.Results:The incidence of postoperative myocardial injury in the CNAP group was significantly lower than that in the PSM group(12%vs.30%,P=0.01);in the CNAP group hypotensive episodes(6 vs.3,P=0.01),positive balance of fluid therapy(700 vs.500 mL,P<0.001),more use of vasoactive drugs(29 vs.18,P=0.04),more stable hemodynamics medical status(P=0.03)were recorded.Conclusion:The hemodynamic management strategy based on continuous non-invasive blood pressure monitoring can reduce the incidence of myocardial injury after elective craniotomy and maintain a more stable hemodynamic state.
文摘This study aims to confirm whether noncontact monitoring of relative changes in blood pressure can be estimated using microwave radar sensors. First, an equation to estimate blood pressure was derived, after which, the effectiveness of the estimation equation was confirmed using data obtained by a noncontact method while inducing variations in blood pressure. We considered that the Bramwell-Hill equation, which contains some parameters that directly indicate changes in blood pressure, would be an appropriate reference to construct an estimation equation for the noncontact method, because measurements using microwave radar sensors can measure minute scale motion on the skin surface induced by the pulsation of blood vessels. In order to estimate relative changes in blood pressure, we considered a simple equation including the pulse transit time (PTT), amplitude of signals and body dimensions as parameters. To verify the effectiveness of the equation for estimating changes in blood pressure, two experiments were conducted: a cycling task using an ergometer, which induces blood pressure fluctuations because of changes in cardiac output, and a task using the Valsalva maneuver, which induces blood pressure fluctuations because of changes in vascular resistance. The results obtained from the two experiments suggested that the proposed equation using microwave radar sensors can accurately estimate relative changes of blood pressure. In particular, relatively favorable results were obtained for the changes in blood pressure induced by the changes in cardiac volume. Although many issues remain, this method could be expected to contribute to the continuous evaluation of cardiac function while reducing the burden on patients.
文摘Objective:To analyze the correlation of the relative parameters of intracranial pressure to the prognosis in patients with craniocerebral injury.Methods:The clinical data of 80 patients with closed craniocerebral injury were retrospectively analyzed,and all of these patients underwent conventional examinations of arterial blood pressure and intracranial pressure.Neumatic DCR system was used to monitor relative parameters of intracranial pressure from patients.According to the score of Glasgow outcome scale(GOS)upon discharge,they were divided into favorable prognosis group(GOSⅢ-Ⅴ,n=46)and unfavorable prognosis group(GOSⅠ-Ⅱ,n=34).The relative parameters of intracranial pressure of two groups were compared so as to analyze the correlation of the prognosis in patients to ICP-related parameters.Results:Pressure reactivity index(PRx)and intracranial pressure(ICP)of favorable prognosis group were significantly higher than those of unfavorable prognosis group(t=12.27,t=5.22,p<0.05).Meanwhile,cerebral perfusion pressure(CPP)and ICP-ABP wave amplitude correlation(IAAC)of favorable prognosis group were significantly lower than those of unfavorable prognosis group(t=14.54,t=14.78,p<0.05).The average age,gender,duration of admission to neurosurgical intensive care unit(NICU)and GCS(Glasgow coma scale)score on admission of the two groups were not statistically significant.Conclusions:The prognosis and ICP-related parameters(such as PRx,ICP,CPP,etc.)in patients with craniocerebral injury are risk factors for the prognosis effect.Therefore,to monitor the above-mentioned indicators has an important clinical value for assessing the prognosis of craniocerebral injury.
文摘Background Patients with acute brain injury(ABI)are a peculiar population because ABI does not only affect the brain but also other organs such as the lungs,as theorized in brain–lung crosstalk models.ABI patients often require mechanical ventilation(MV)to avoid the complications of impaired respiratory function that can follow ABI;MV should be settled with meticulousness owing to its effects on the intracranial compartment,especially regarding positive end-expiratory pressure(PEEP).This scoping review aimed to(1)describe the physiological basis and mechanisms related to the effects of PEEP in ABI;(2)examine how clinical research is conducted on this topic;(3)identify methods for setting PEEP in ABI;and(4)investigate the impact of the application of PEEP in ABI on the outcome.Methods The five-stage paradigm devised by Peters et al.and expanded by Arksey and O'Malley,Levac et al.,and the Joanna Briggs Institute was used for methodology.We also adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)extension criteria.Inclusion criteria:we compiled all scientific data from peer-reviewed journals and studies that discussed the application of PEEP and its impact on intracranial pressure,cerebral perfusion pressure,and brain oxygenation in adult patients with ABI.Exclusion criteria:studies that only examined a pediatric patient group(those under the age of 18),experiments conducted solely on animals;studies without intracranial pressure and/or cerebral perfusion pressure determinations,and studies with incomplete information.Two authors searched and screened for inclusion in papers published up to July 2023 using the PubMed-indexed online database.Data were presented in narrative and tubular form.Results The initial search yielded 330 references on the application of PEEP in ABI,of which 36 met our inclusion criteria.PEEP has recognized beneficial effects on gas exchange,but it produces hemodynamic changes that should be predicted to avoid undesired consequences on cerebral blood flow and intracranial pressure.Moreover,the elastic properties of the lungs influence the transmission of the forces applied by MV over the brain so they should be taken into consideration.Currently,there are no specific tools that can predict the effect of PEEP on the brain,but there is an established need for a comprehensive monitoring approach for these patients,acknowledging the etiology of ABI and the measurable variables to personalize MV.Conclusion PEEP can be safely used in patients with ABI to improve gas exchange keeping in mind its potentially harmful effects,which can be predicted with adequate monitoring supported by bedside non-invasive neuromonitoring tools.
基金The project was funded by the National Institute of Health(NIH)EY024582the Basic Science Research Program through the National Research Foundation of Korea(NRF)under the Ministry of Education(NRF-2013R1A6A3A03026384).
文摘Intraocular pressure(IOP)is a key clinical parameter in glaucoma management.However,despite the potential utility of daily measurements of IOP in the context of disease management,the necessary tools are currently lacking,and IOP is typically measured only a few times a year.Here we report on a microscale implantable sensor that could provide convenient,accurate,ondemand IOP monitoring in the home environment.When excited by broadband near-infrared(NIR)light from a tungsten bulb,the sensor’s optical cavity reflects a pressure-dependent resonance signature that can be converted to IOP.NIR light is minimally absorbed by tissue and is not perceived visually.The sensor’s nanodot-enhanced cavity allows for a 3–5 cm readout distance with an average accuracy of 0.29 mm Hg over the range of 0–40 mm Hg.Sensors were mounted onto intraocular lenses or silicone haptics and secured inside the anterior chamber in New Zealand white rabbits.Implanted sensors provided continuous in vivo tracking of short-term transient IOP elevations and provided continuous measurements of IOP for up to 4.5 months.
文摘目的探讨经桡动脉入路脑血管造影中持续动脉压监测在发现导管扭转打结中的作用。方法回顾性分析2017年7月至2019年12月接受经桡动脉入路脑血管造影的116例缺血性脑血管病患者的临床病例资料,其中80例造影过程中接受持续动脉压监测(测压组),另36例作为无测压组。在操作过程中,动脉压力差变小甚至曲线变平提示导管某段发生扭转打结。比较两组患者的性别、年龄、主动脉弓型等基本临床病例信息,手术适应证、透视时间、手术时间,以及造影过程中导管扭转打结发生率。结果两组患者性别、年龄、主动脉弓型、透视时间、手术时间差异均无统计学意义。测压组动脉导管扭转打结发生率低于无测压组(0 vs 8.33%,P=0.047)。结论持续动脉压力监测有助于发现早期桡动脉入路脑血管造影过程中导管扭转打结,进而降低相关并发症的发生,值得推广应用。
文摘目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。
文摘BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.