Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(ex...Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.展开更多
From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and ma...From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and macroeconomic variables on Chinese gold, silver and platinum prices, but also the feedback effects of Chinese precious metal prices under this impact. The results show that international oil prices play an important role in precious metal price variation both in long-term and short-term, and exchange rate only has an effect in short-term, while interest rate is ineffective in predicting precious metal prices. In addition, precious metal prices have some feedback effects on international oil prices and interest rate in short-term.展开更多
In recent Years, China's real estate market has been rapid developed, and real estate has become a hot spot of consumption and investment. In some large and medium-sized cities there has been a rapid rise in housing ...In recent Years, China's real estate market has been rapid developed, and real estate has become a hot spot of consumption and investment. In some large and medium-sized cities there has been a rapid rise in housing prices. The rapid rise in housing prices has led to difficulties in the purchase of houses in some cities and towns, and this phenomenon has aroused the attention and con- cern of all walks of life. Housing is the basic human life needs. Housing problem is not only an economic problem, but also a social problem. The relationship between house price and land price and the effective control of housing prices have become the focus of government and scholars. Thus, grey relational analysis is used to ana- lyze the relationship between housing prices and land prices, and the grey relational coefficients are calculated.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
With the frequent fluctuations of international crude oil prices and China's increasing dependence on foreign oil in recent years, the volatility of international oil prices has significantly influenced China domesti...With the frequent fluctuations of international crude oil prices and China's increasing dependence on foreign oil in recent years, the volatility of international oil prices has significantly influenced China domestic refined oil price. This paper aims to investigate the transmission and feedback mechanism between international crude oil prices and China's refined oil prices for the time span from January 2011 to November 2015 by using the Granger causality test, vector autoregression model, impulse response function and variance decomposition methods. It is demonstrated that variation of international crude oil prices can cause China domestic refined oil price to change with a weak feedback effect. Moreover, international crude oil prices and China domestic refined oil prices are affected by their lag terms in positive and negative directions in different degrees. Besides, an international crude oil price shock has a signif- icant positive impact on domestic refined oil prices while the impulse response of the international crude oil price variable to the domestic refined oil price shock is negatively insignificant. Furthermore, international crude oil prices and domestic refined oil prices have strong historical inheri- tance. According to the variance decomposition analysis, the international crude oil price is significantly affected by its own disturbance influence, and a domestic refined oil price shock has a slight impact on international crude oil price changes. The domestic refined oil price variance is mainly caused by international crude oil price disturbance, while the domestic refined oil price is slightly affected by its own disturbance. Generally, domestic refined oil prices do not immediately respond to an international crude oil price change, that is, there is a time lag.展开更多
This paper uses a spatial statistics method based on the calculation of spatial autocorrelation as a possible approach for modeling and quantifying the distribution of urban land price in Changzhou City, Jiangsu Provi...This paper uses a spatial statistics method based on the calculation of spatial autocorrelation as a possible approach for modeling and quantifying the distribution of urban land price in Changzhou City, Jiangsu Province. GIS and spatial statistics provide a useful way for describing the distribution of urban land price both spatially and temporally, and have proved to be useful for understanding land price distribution pattern better. In this paper, we apply the statistical analysis method to 8379 urban land price samples collected from Changzhou Land Market, and it is turned out that the proposed approach can effectively identify the spatial clusters and local point patterns in dataset and forms a general method for conceptualizing the land price structure. The results show that land price structure in Changzhou City is very complex and that even where there is a high spatial autocorrelation, the land price is still relatively heterogeneous. Furthermore, lands for different uses have different degrees of spatial autocorrelation. Spatial autocorrelation of commercial lands is more intense than that of residential and industrial lands in regional central district. This means that treating land price as integration of homogeneous units can limit analysis of pattern, over-simplifying the structure of land price, but the methods, just as the autocorrelation approaches, are useful tools for quantifying the variables of land price.展开更多
The thesis analyzes the causal relationship between the cotton spot,and the tendency and impact of prices of futures markets in Xinjiang by using ADF test,co-integration analysis,Granger causality test and other econo...The thesis analyzes the causal relationship between the cotton spot,and the tendency and impact of prices of futures markets in Xinjiang by using ADF test,co-integration analysis,Granger causality test and other econometric methods in order to discuss the interacted relationship between futures market prices of cotton and spot market prices since the futures of cotton in Xinjiang go public.The results of empirical analysis show that the spot market prices of cotton and the futures market prices in Xinjiang fluctuate prominently in the short run and tend to counterpoise in the long run;the futures market of cotton plays the role of leading the spot market prices of cotton in Xinjiang,while the spot market prices of cotton in Xinjiang impacts little on the futures market prices.The corresponding countermeasures are put forward.The government should continuously perfect the construction of the futures market of cotton in Xinjiang,so as to exert the function of price discovery and the function of hedging,and promote the development of cotton industry in Xinjiang.展开更多
The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of...The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.展开更多
In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for...In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.展开更多
We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has...We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has a~2%scale uncertainty by taking the renormalization scale as m_(b)(m_(b))and varying it within the usual range of [m_(b)(m_(b))/2,2m_(b)(m_(b))].展开更多
Since the second half of 2015,the price of pork has come into a new round of rising cycle,especially from January to April of 2016,pork prices continued rising.Excessive rising of pork prices sparks people’s concern ...Since the second half of 2015,the price of pork has come into a new round of rising cycle,especially from January to April of 2016,pork prices continued rising.Excessive rising of pork prices sparks people’s concern about CPI rising.It is of practical significance to discussing the fluctuation cycle of pork price and its relationship with CPI.In this context,we do empirical research on pork cycle and price fluctuations with CPI relationships.From January 2000 to March 2016,based on a total of 195 samples,using Eviews6.0 metrology software,we draw the following conclusions:fluctuations in the price of pork did Granger cause CPI,the impact of pork price fluctuations on the CPI was significant and the effect significantly was enhanced after certain lag;CPI did not Granger cause pork price fluctuations,CPI had no significant effect on the price of pork;pork price was affected by its own large contribution,and there was a certain time lag effect of the impact;CPI had a positive impact on itself,for its contribution is relatively large.Finally we put forward relative strategies.展开更多
In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the...In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.展开更多
Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution ...Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution of family ties mobilize the family as a whole.Therefore,cancer,beyond its individual traumatic dimension,affects the whole family,which can modify family ties and family functioning.Our objective is to evaluate family functioning from the complex model evaluating cohesion and adaptability when an adolescent or young adult has cancer.Methods:Adolescents and young adults with cancer(n=41),mothers(n=41),and fathers(n=13)participated in this study.They completed the Family Adaptation and Cohesion Scales(FACES Ⅲ)questionnaire.Family functioning when an aya is ill has been compared to that of families without any disease.Results:a comparison of the mean scores of perceived cohesion and adaptability of face Ⅲ indicates no significant difference for cohesion.In contrast,the averages of the adaptability scores of our sample with those of the general population indicate that families with cancer hais generally feel more“adaptable”than the non-clinical population.These results are statistically significant for AJA,but also for mothers and fathers.Regarding the mean scores of ideal cohesion and ideal adaptability,there are no significant differences between fathers in our sample and fathers in the general population.In contrast,mothers in our sample had less ideal adaptability than those in the general population.In aya patients with cancer,the scores of both adaptability and cohesion were significantly different from those of non-diseased adolescents.Conclusion:Cancer leads to many changes in family relationships,making it difficult to empower the young patient and latent the evolution of the relationship.展开更多
To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean d...To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved.展开更多
Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social ...Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this problem.The proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among nodes.Three new metrics are defined:the intensity of node social relationships,node activity,and community connectivity.Within the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node activity.When a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between communities.The proposed algorithm was compared to three existing routing algorithms in simulation experiments.Results indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.展开更多
We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate syste...We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate systems is critical,and exploring reference frames is essential in direction and coordinate systems.Despite its significance,existing research on We-map lacks specific solutions for the exploration of reference frames is indispensable for the establishment of accurate direction and coordinate systems.In this paper,we endeavor to address this gap by elucidating the significance of We-map reference frames,defining them with mathematical constraints,summarizing their nature and characteristics,deriving their transformation relationships and representing them through mathematical formulars and equations.Our work contributes to the fundamental theory of We-map and provides valuable systems and support for the mathematical foundation of We-map,map production,and platform development.Ultimately,this research serves to advance the development of We-map.展开更多
Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existi...Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existing work.In addition,it is difficult to manipulate high-dimensional quantum states under the existing conditions of quantum information processing,leading to low practicality and engineering feasibility of protocols for comparing size relation.Considering this situation,we propose an innovative protocol.The proposed protocol can make size comparison by exploiting more manageable two-dimensional Bell states,which significantly enhances its feasibility with current quantum technologies.Simultaneously,the proposed protocol enables multiple participants to compare their privacies with the semi-quantum model.The communication process of the protocol is simulated on the IBM Quantum Experience platform to verify its effectiveness.Security analysis shows that the proposed protocol can withstand common attacks while preserving the privacies of all participants.Thus,the devised protocol may provide an important reference for implementation of quantum private size comparison protocols.展开更多
Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu...Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.展开更多
The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes de...The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models.展开更多
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,...Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42071222,41771194)。
文摘Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.
基金Project(13&ZD169)supported by the Major Program of the National Social Science Foundation,ChinaProject(13YJAZH149)supported by Research Project in Humanities and Social Sciences Conducted by the Ministry of Education,China+2 种基金Project(2011ZK2043)supported by the Key Program of the Soft Science Research Project of Hunan Province,ChinaProject(2015JJ2182)supported by Natural Science Foundation of Hunan Province of ChinaProject(2009JYJR035)supported by Emergency Project "The Study of International Financial Crisis" of Ministry of Education of China
文摘From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and macroeconomic variables on Chinese gold, silver and platinum prices, but also the feedback effects of Chinese precious metal prices under this impact. The results show that international oil prices play an important role in precious metal price variation both in long-term and short-term, and exchange rate only has an effect in short-term, while interest rate is ineffective in predicting precious metal prices. In addition, precious metal prices have some feedback effects on international oil prices and interest rate in short-term.
文摘In recent Years, China's real estate market has been rapid developed, and real estate has become a hot spot of consumption and investment. In some large and medium-sized cities there has been a rapid rise in housing prices. The rapid rise in housing prices has led to difficulties in the purchase of houses in some cities and towns, and this phenomenon has aroused the attention and con- cern of all walks of life. Housing is the basic human life needs. Housing problem is not only an economic problem, but also a social problem. The relationship between house price and land price and the effective control of housing prices have become the focus of government and scholars. Thus, grey relational analysis is used to ana- lyze the relationship between housing prices and land prices, and the grey relational coefficients are calculated.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
基金support from the Key Project of National Social Science Foundation of China (NO. 13&ZD159)
文摘With the frequent fluctuations of international crude oil prices and China's increasing dependence on foreign oil in recent years, the volatility of international oil prices has significantly influenced China domestic refined oil price. This paper aims to investigate the transmission and feedback mechanism between international crude oil prices and China's refined oil prices for the time span from January 2011 to November 2015 by using the Granger causality test, vector autoregression model, impulse response function and variance decomposition methods. It is demonstrated that variation of international crude oil prices can cause China domestic refined oil price to change with a weak feedback effect. Moreover, international crude oil prices and China domestic refined oil prices are affected by their lag terms in positive and negative directions in different degrees. Besides, an international crude oil price shock has a signif- icant positive impact on domestic refined oil prices while the impulse response of the international crude oil price variable to the domestic refined oil price shock is negatively insignificant. Furthermore, international crude oil prices and domestic refined oil prices have strong historical inheri- tance. According to the variance decomposition analysis, the international crude oil price is significantly affected by its own disturbance influence, and a domestic refined oil price shock has a slight impact on international crude oil price changes. The domestic refined oil price variance is mainly caused by international crude oil price disturbance, while the domestic refined oil price is slightly affected by its own disturbance. Generally, domestic refined oil prices do not immediately respond to an international crude oil price change, that is, there is a time lag.
基金Under the auspices of the National Natural Science Foundation of China (No. 40371091), Land Monitoring Project ofthe Ministry of Land and Resources of P. R. China (No. 2005-6.1-6)
文摘This paper uses a spatial statistics method based on the calculation of spatial autocorrelation as a possible approach for modeling and quantifying the distribution of urban land price in Changzhou City, Jiangsu Province. GIS and spatial statistics provide a useful way for describing the distribution of urban land price both spatially and temporally, and have proved to be useful for understanding land price distribution pattern better. In this paper, we apply the statistical analysis method to 8379 urban land price samples collected from Changzhou Land Market, and it is turned out that the proposed approach can effectively identify the spatial clusters and local point patterns in dataset and forms a general method for conceptualizing the land price structure. The results show that land price structure in Changzhou City is very complex and that even where there is a high spatial autocorrelation, the land price is still relatively heterogeneous. Furthermore, lands for different uses have different degrees of spatial autocorrelation. Spatial autocorrelation of commercial lands is more intense than that of residential and industrial lands in regional central district. This means that treating land price as integration of homogeneous units can limit analysis of pattern, over-simplifying the structure of land price, but the methods, just as the autocorrelation approaches, are useful tools for quantifying the variables of land price.
基金Supported by The President Foundation Program of Tarim University(TDSKSS08002)
文摘The thesis analyzes the causal relationship between the cotton spot,and the tendency and impact of prices of futures markets in Xinjiang by using ADF test,co-integration analysis,Granger causality test and other econometric methods in order to discuss the interacted relationship between futures market prices of cotton and spot market prices since the futures of cotton in Xinjiang go public.The results of empirical analysis show that the spot market prices of cotton and the futures market prices in Xinjiang fluctuate prominently in the short run and tend to counterpoise in the long run;the futures market of cotton plays the role of leading the spot market prices of cotton in Xinjiang,while the spot market prices of cotton in Xinjiang impacts little on the futures market prices.The corresponding countermeasures are put forward.The government should continuously perfect the construction of the futures market of cotton in Xinjiang,so as to exert the function of price discovery and the function of hedging,and promote the development of cotton industry in Xinjiang.
基金supported by the National Natural Science Foundation of China(Nos.U1804263,U1736214,62172435)the Zhongyuan Science and Technology Innovation Leading Talent Project(No.214200510019).
文摘The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.
文摘In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12175025,12247129,and 12347101)the Graduate Research and Innovation Foundation of Chongqing,China(Grant No.ydstd1912)the Foundation of Chongqing Normal University(Grant No.24XLB015)。
文摘We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has a~2%scale uncertainty by taking the renormalization scale as m_(b)(m_(b))and varying it within the usual range of [m_(b)(m_(b))/2,2m_(b)(m_(b))].
文摘Since the second half of 2015,the price of pork has come into a new round of rising cycle,especially from January to April of 2016,pork prices continued rising.Excessive rising of pork prices sparks people’s concern about CPI rising.It is of practical significance to discussing the fluctuation cycle of pork price and its relationship with CPI.In this context,we do empirical research on pork cycle and price fluctuations with CPI relationships.From January 2000 to March 2016,based on a total of 195 samples,using Eviews6.0 metrology software,we draw the following conclusions:fluctuations in the price of pork did Granger cause CPI,the impact of pork price fluctuations on the CPI was significant and the effect significantly was enhanced after certain lag;CPI did not Granger cause pork price fluctuations,CPI had no significant effect on the price of pork;pork price was affected by its own large contribution,and there was a certain time lag effect of the impact;CPI had a positive impact on itself,for its contribution is relatively large.Finally we put forward relative strategies.
文摘In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.
文摘Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution of family ties mobilize the family as a whole.Therefore,cancer,beyond its individual traumatic dimension,affects the whole family,which can modify family ties and family functioning.Our objective is to evaluate family functioning from the complex model evaluating cohesion and adaptability when an adolescent or young adult has cancer.Methods:Adolescents and young adults with cancer(n=41),mothers(n=41),and fathers(n=13)participated in this study.They completed the Family Adaptation and Cohesion Scales(FACES Ⅲ)questionnaire.Family functioning when an aya is ill has been compared to that of families without any disease.Results:a comparison of the mean scores of perceived cohesion and adaptability of face Ⅲ indicates no significant difference for cohesion.In contrast,the averages of the adaptability scores of our sample with those of the general population indicate that families with cancer hais generally feel more“adaptable”than the non-clinical population.These results are statistically significant for AJA,but also for mothers and fathers.Regarding the mean scores of ideal cohesion and ideal adaptability,there are no significant differences between fathers in our sample and fathers in the general population.In contrast,mothers in our sample had less ideal adaptability than those in the general population.In aya patients with cancer,the scores of both adaptability and cohesion were significantly different from those of non-diseased adolescents.Conclusion:Cancer leads to many changes in family relationships,making it difficult to empower the young patient and latent the evolution of the relationship.
基金the Sichuan Science and Technology Program(Nos.23ZHCG0049,2023YFG0078,23ZHCG0030,2021ZDZX0007)SCU-SUINING Project(2022CDSN-14).
文摘To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved.
基金supported by the NationalNatural Science Foundation of China(61972136)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T201410,T2020017)+1 种基金the Natural Science Foundation of Xiaogan City(XGKJ2022010095,XGKJ2022010094)the Science and Technology Research Project of Education Department of Hubei Province(No.Q20222704).
文摘Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this problem.The proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among nodes.Three new metrics are defined:the intensity of node social relationships,node activity,and community connectivity.Within the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node activity.When a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between communities.The proposed algorithm was compared to three existing routing algorithms in simulation experiments.Results indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.
基金Industrial Support and Program Project of Universities in Gansu Province(No.2022CYZC-30)National Natural Science Foundation of China(Nos.42430108,41930101)China Scholarship Council(No.202306180085).
文摘We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate systems is critical,and exploring reference frames is essential in direction and coordinate systems.Despite its significance,existing research on We-map lacks specific solutions for the exploration of reference frames is indispensable for the establishment of accurate direction and coordinate systems.In this paper,we endeavor to address this gap by elucidating the significance of We-map reference frames,defining them with mathematical constraints,summarizing their nature and characteristics,deriving their transformation relationships and representing them through mathematical formulars and equations.Our work contributes to the fundamental theory of We-map and provides valuable systems and support for the mathematical foundation of We-map,map production,and platform development.Ultimately,this research serves to advance the development of We-map.
基金supported by the National Natural Science Foundation of China(Grant No.62161025)the Project of Scientific and Technological Innovation Base of Jiangxi Province(Grant No.20203CCD46008)the Jiangxi Provincial Key Laboratory of Fusion and Information Control(Grant No.20171BCD40005).
文摘Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existing work.In addition,it is difficult to manipulate high-dimensional quantum states under the existing conditions of quantum information processing,leading to low practicality and engineering feasibility of protocols for comparing size relation.Considering this situation,we propose an innovative protocol.The proposed protocol can make size comparison by exploiting more manageable two-dimensional Bell states,which significantly enhances its feasibility with current quantum technologies.Simultaneously,the proposed protocol enables multiple participants to compare their privacies with the semi-quantum model.The communication process of the protocol is simulated on the IBM Quantum Experience platform to verify its effectiveness.Security analysis shows that the proposed protocol can withstand common attacks while preserving the privacies of all participants.Thus,the devised protocol may provide an important reference for implementation of quantum private size comparison protocols.
文摘Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.
基金supported by the Technology Projects of Guizhou Province under Grant[2024]003National Natural Science Foundation of China(GrantNos.62166007,62066008,62066007)Guizhou Provincial Science and Technology Projects under Grant No.ZK[2023]300.
文摘The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models.
文摘Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.