Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is...Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is proposed and analyzed in this study.In this scheme,the interactions between selfish users and an operator are characterized as a Stackelberg game.Operator holds a large-scale ESS that is shared among users in the form of energy transactions.It sells energy to users and sets the selling price first.It maximizes its profit through optimal pricing and ESS dispatching.Users purchase some energy from operator for the reduction of their demand charges after operator's selling price is announced.This game-theoretic ESS sharing scheme is characterized and analyzed by formulating and solving a bi-level optimization model.The upper-level optimization maximizes operator's profit and the lower-level optimization minimizes users'costs.The bi-level model is transformed and linearized into a mixed-integer linear programming(MILP)model using the mathematical programming with equilibrium constraints(MPEC)method and model linearizing techniques.Case studies with actual data are carried out to explore the economic performances of the proposed ESS sharing scheme.展开更多
Distributed photovoltaic(PV)systems have constantly been the key to achieve a low-carbon economy in China.However,the development of Chinese distributed PV systems has failed to meet expectations because of their irra...Distributed photovoltaic(PV)systems have constantly been the key to achieve a low-carbon economy in China.However,the development of Chinese distributed PV systems has failed to meet expectations because of their irrational profit and cost allocations.In this study,the methodology for calculating the levelized cost of energy(LCOE)for PV is thoroughly discussed to address this issue.A mixed-integer linear programming model is built to determine the optimal system operation strategy with a benefit analysis.An externality-corrected mathematical model based on Shapley value is established to allocate the cost of distributed PV systems in 15 Chinese cities between the government,utility grid and residents.Results show that(i)an inverse relationship exists between the LCOEs and solar radiation levels;(ii)the government and residents gain extra benefits from the utility grid through net metering policies,and the utility grid should be the highly subsidized participant;(iii)the percentage of cost assigned to the utility grid and government should increase with the expansion of battery bank to weaken the impact of demand response on increasing theoretical subsidies;and(iv)apart from the LCOE,the local residential electricity prices remarkably impact the subsidy calculation results.展开更多
Sugarcane crop occupies an area of about 23.78 million hectares in 103 countries,and an estimated production of 1.66 billion tons,adding to this volume more than 6%to 17%concerning residual biomass resulting from harv...Sugarcane crop occupies an area of about 23.78 million hectares in 103 countries,and an estimated production of 1.66 billion tons,adding to this volume more than 6%to 17%concerning residual biomass resulting from harvest.The destination of this residual biomass is a major challenge to managers of mills.There are at least two alternatives which are reduction in residue production and increased output in electricity cogeneration.These two conflicting objectives are mathematically modeled as a bi-objective problem.This study developed a bi-objective mathematical model for choosing sugarcane varieties that result in maximum revenue from electricity sales and minimum gathering cost of sugarcane harvesting residual biomass.The approach used to solve the proposed model was based on theε-constraints method.Experiments were performed using real data from sugarcane varieties and costs and showed effectiveness of model and method proposed.These experiments showed the possibility of increasing net revenue from electricity sale,i.e.,already discounted the cost increase with residual biomass gathering,in up to 98.44%.展开更多
Conventional approaches towards energy-system modelling and operation are based upon the system design and performance optimization.In system-design optimization,the thermal or mechanical characteristics of the system...Conventional approaches towards energy-system modelling and operation are based upon the system design and performance optimization.In system-design optimization,the thermal or mechanical characteristics of the systems providing for the heat or electricity demands were derived separately without integration with the energy source and without interaction with demand,which results in low-efficiency energy performance.This paper presents a key review on the integration of biomass-powered combined heat and power(BCHP)systems in district-heating systems as well as coupling with thermal-energy storage.In BCHP design,the appropriate sizing of the associated components as part of the district-heating system is very important to provide the optimal dispatch strategy as well as minimized cost and environmental impact while it co-operates with thermal-energy storage.Future strategies for the feasibility,evaluation and integration of biomass-powered energy systems in the context of district systems are also studied.展开更多
基金supported by the National Natural Science Foundation of China(U21A20478)Zhejiang Provincial Nature Science Foundation of China(LZ21F030004)Key-Area Research and Development Program of Guangdong Province(2018B010107002)。
文摘Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is proposed and analyzed in this study.In this scheme,the interactions between selfish users and an operator are characterized as a Stackelberg game.Operator holds a large-scale ESS that is shared among users in the form of energy transactions.It sells energy to users and sets the selling price first.It maximizes its profit through optimal pricing and ESS dispatching.Users purchase some energy from operator for the reduction of their demand charges after operator's selling price is announced.This game-theoretic ESS sharing scheme is characterized and analyzed by formulating and solving a bi-level optimization model.The upper-level optimization maximizes operator's profit and the lower-level optimization minimizes users'costs.The bi-level model is transformed and linearized into a mixed-integer linear programming(MILP)model using the mathematical programming with equilibrium constraints(MPEC)method and model linearizing techniques.Case studies with actual data are carried out to explore the economic performances of the proposed ESS sharing scheme.
基金This study was sponsored by the National Key R&D Program of China(Grant No.2018YFD1100202)China Postdoctoral Science Foundation(Grant No.2018M643807XB)and Education Department of Shaanxi(Grant No.19JS041).
文摘Distributed photovoltaic(PV)systems have constantly been the key to achieve a low-carbon economy in China.However,the development of Chinese distributed PV systems has failed to meet expectations because of their irrational profit and cost allocations.In this study,the methodology for calculating the levelized cost of energy(LCOE)for PV is thoroughly discussed to address this issue.A mixed-integer linear programming model is built to determine the optimal system operation strategy with a benefit analysis.An externality-corrected mathematical model based on Shapley value is established to allocate the cost of distributed PV systems in 15 Chinese cities between the government,utility grid and residents.Results show that(i)an inverse relationship exists between the LCOEs and solar radiation levels;(ii)the government and residents gain extra benefits from the utility grid through net metering policies,and the utility grid should be the highly subsidized participant;(iii)the percentage of cost assigned to the utility grid and government should increase with the expansion of battery bank to weaken the impact of demand response on increasing theoretical subsidies;and(iv)apart from the LCOE,the local residential electricity prices remarkably impact the subsidy calculation results.
文摘Sugarcane crop occupies an area of about 23.78 million hectares in 103 countries,and an estimated production of 1.66 billion tons,adding to this volume more than 6%to 17%concerning residual biomass resulting from harvest.The destination of this residual biomass is a major challenge to managers of mills.There are at least two alternatives which are reduction in residue production and increased output in electricity cogeneration.These two conflicting objectives are mathematically modeled as a bi-objective problem.This study developed a bi-objective mathematical model for choosing sugarcane varieties that result in maximum revenue from electricity sales and minimum gathering cost of sugarcane harvesting residual biomass.The approach used to solve the proposed model was based on theε-constraints method.Experiments were performed using real data from sugarcane varieties and costs and showed effectiveness of model and method proposed.These experiments showed the possibility of increasing net revenue from electricity sale,i.e.,already discounted the cost increase with residual biomass gathering,in up to 98.44%.
文摘Conventional approaches towards energy-system modelling and operation are based upon the system design and performance optimization.In system-design optimization,the thermal or mechanical characteristics of the systems providing for the heat or electricity demands were derived separately without integration with the energy source and without interaction with demand,which results in low-efficiency energy performance.This paper presents a key review on the integration of biomass-powered combined heat and power(BCHP)systems in district-heating systems as well as coupling with thermal-energy storage.In BCHP design,the appropriate sizing of the associated components as part of the district-heating system is very important to provide the optimal dispatch strategy as well as minimized cost and environmental impact while it co-operates with thermal-energy storage.Future strategies for the feasibility,evaluation and integration of biomass-powered energy systems in the context of district systems are also studied.