The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (s...The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.展开更多
The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Dat...The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet.展开更多
The hydrological process in the dry–warm valley of the mountainous area of southwest China has unique characteristics and has attracted scientific attention worldwide.Given that this is an area with fragile ecosystem...The hydrological process in the dry–warm valley of the mountainous area of southwest China has unique characteristics and has attracted scientific attention worldwide.Given that this is an area with fragile ecosystems and intensive water resource conflicts in the upper reaches of the Yangtze River,a systematic identification of its hydrological responses to climate and land use variations needs to be performed.In this study,MIKE SHE was employed and calibrated for the Anning River Basin in the dry–warm valley.Subsequently,a deep learning neural network model of the long short-term memory(LSTM)and a traditional multi-model ensemble mean(MMEM)method were used for an ensemble of 31 global climate models(GCMs)for climate projection.The cellular automata–Markov model was implemented to project the spatial pattern of land use considering climatic,social,and economic conditions.Four sets of climate projections and three sets of land use projections were generated and fed into the MIKE SHE to project hydrologic responses from 2021 to 2050.For the calibration and first validation periods of the daily simulation,the coefficients of determination(R)were 0.85 and 0.87 and the Nash–Sutcliffe efficiency values were 0.72 and 0.73,respectively.The advanced LSTM performed better than the traditional MMEM method for daily temperature and monthly precipitation.The average monthly temperature projection under representative concentration pathway 8.5(RCP8.5)was expected to be slightly higher than that under RCP4.5;this is contrary to the average monthly precipitation from June to October.The variations in streamflow and actual evapotranspiration(ET)were both more sensitive to climate change than to land use change.There was no significant relationship between the variations in streamflow and the ET in the study area.This work could provide general variation conditions and a range of hydrologic responses to complex and changing environments,thereby assisting with stochastic uncertainty and optimizing water resource management in critical regions.展开更多
An ocean model developed by the Institute of Marine Research and the University of Bergen in Norway (BOM) and a state-of-the-art sea ice model developed by NCAR (CSIM4) are coupled, Considering influences of 9 major r...An ocean model developed by the Institute of Marine Research and the University of Bergen in Norway (BOM) and a state-of-the-art sea ice model developed by NCAR (CSIM4) are coupled, Considering influences of 9 major rivers,forced by the NCEP reanalysis atmospheric fields and the Levitus surface salinity,the Arctic sea ice climatic variation from January 1949 to December.1999 was simulated through the coupled model.The comparison of simulated results and observations shows that:(1)the long-term ice concentration variation tendencies are in consistent with the observations in the divisional ocean regions;(2)simulated ice thickness horizontal distribution is reasonable.Simulated ice thickness has a decreasing tendency in the central Arctic,which agrees with the submarine observations.Simulated annually maximum ice thickness is highly related to observed fast-ice thickness off the Russian coast;and (3)sea ice area/volume fluxes through the Fram Strait are in accord with the satellite-derived data.Generally,the coupled model successfully simulated the Arctic Ocean sea ice climatic variation.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No. XDA05100502)+1 种基金the National Basic Research Program of China (Grant No.2010CB950804)100 Talents Program of the Chinese Academy of Sciences
文摘The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.
文摘The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet.
基金This study was supported by the National Key Research Program of China(2016YFC0502209)Beijing Municipal Natural Science Foundation(JQ18028)the National Natural Science Foundation of China(51879007 and U20A20117).
文摘The hydrological process in the dry–warm valley of the mountainous area of southwest China has unique characteristics and has attracted scientific attention worldwide.Given that this is an area with fragile ecosystems and intensive water resource conflicts in the upper reaches of the Yangtze River,a systematic identification of its hydrological responses to climate and land use variations needs to be performed.In this study,MIKE SHE was employed and calibrated for the Anning River Basin in the dry–warm valley.Subsequently,a deep learning neural network model of the long short-term memory(LSTM)and a traditional multi-model ensemble mean(MMEM)method were used for an ensemble of 31 global climate models(GCMs)for climate projection.The cellular automata–Markov model was implemented to project the spatial pattern of land use considering climatic,social,and economic conditions.Four sets of climate projections and three sets of land use projections were generated and fed into the MIKE SHE to project hydrologic responses from 2021 to 2050.For the calibration and first validation periods of the daily simulation,the coefficients of determination(R)were 0.85 and 0.87 and the Nash–Sutcliffe efficiency values were 0.72 and 0.73,respectively.The advanced LSTM performed better than the traditional MMEM method for daily temperature and monthly precipitation.The average monthly temperature projection under representative concentration pathway 8.5(RCP8.5)was expected to be slightly higher than that under RCP4.5;this is contrary to the average monthly precipitation from June to October.The variations in streamflow and actual evapotranspiration(ET)were both more sensitive to climate change than to land use change.There was no significant relationship between the variations in streamflow and the ET in the study area.This work could provide general variation conditions and a range of hydrologic responses to complex and changing environments,thereby assisting with stochastic uncertainty and optimizing water resource management in critical regions.
基金supported by the National Natural Science Foundation of China under Grant 40175023
文摘An ocean model developed by the Institute of Marine Research and the University of Bergen in Norway (BOM) and a state-of-the-art sea ice model developed by NCAR (CSIM4) are coupled, Considering influences of 9 major rivers,forced by the NCEP reanalysis atmospheric fields and the Levitus surface salinity,the Arctic sea ice climatic variation from January 1949 to December.1999 was simulated through the coupled model.The comparison of simulated results and observations shows that:(1)the long-term ice concentration variation tendencies are in consistent with the observations in the divisional ocean regions;(2)simulated ice thickness horizontal distribution is reasonable.Simulated ice thickness has a decreasing tendency in the central Arctic,which agrees with the submarine observations.Simulated annually maximum ice thickness is highly related to observed fast-ice thickness off the Russian coast;and (3)sea ice area/volume fluxes through the Fram Strait are in accord with the satellite-derived data.Generally,the coupled model successfully simulated the Arctic Ocean sea ice climatic variation.