The lithium battery is an essential component of electric cars;prompt and accurate problem detection is vital in guaranteeing electric cars’safe and dependable functioning and addressing the limitations of Back Propa...The lithium battery is an essential component of electric cars;prompt and accurate problem detection is vital in guaranteeing electric cars’safe and dependable functioning and addressing the limitations of Back Propagation(BP)neural networks in terms of vanishing gradients and inability to effectively capture dependencies in time series,and the limitations of Long-Short Term Memory(LSTM)neural network models in terms of risk of overfitting.A method based on LSTM-BP is put forward for power battery fault diagnosis to improve the accuracy of lithium battery fault diagnosis.First,a lithium battery model is constructed based on the second-order RC equivalent circuit and the electro-thermal coupling model,and various lithium battery failures are simulated to examine the fault characteristics.Then,the lithium battery charging and discharging experiments collect,clean,and process the battery data.By constructing a neural network LSTM-BP model,we verified the superiority and accuracy of the LSTM-BP neural network model by comparing the LSTM model and BP model vertically and by comparing the Recurrent Neural Network(RNN)model,the Gated Recurrent Unit(GRU)model,and the Residual Neural Network(ResNet)model of a more advanced architecture horizontally.Finally,the lithium battery fault diagnosis process is summarized through the threshold quantitative criteria,and different faults are diagnosed and analyzed.Theresults show that the LSTM-BP neural network not only overcomes the limitations of the LSTMneural network and BP neural network but also improves the ability to process sequence data and reduces the risk of overfitting.展开更多
Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in ...Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.展开更多
Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches...Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability.展开更多
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ...The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).展开更多
Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learni...Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learning models,especially those utilizing complex algorithms like deep learning,have demonstrated major potential in extracting important information fromlarge operational datasets.Despite their efficiency,machine learningmodels face challenges,making Explainable AI(XAI)crucial for improving their understandability and fine-tuning.The importance of feature contribution and selection using XAI in the diagnosis of machine faults is examined in this study.The technique is applied to evaluate different machine-learning algorithms.Extreme Gradient Boosting,Support Vector Machine,Gaussian Naive Bayes,and Random Forest classifiers are used alongside Logistic Regression(LR)as a baseline model because their efficacy and simplicity are evaluated thoroughly with empirical analysis.The XAI is used as a targeted feature selection technique to select among 29 features of the time and frequency domain.The XAI approach is lightweight,trained with only targeted features,and achieved similar results as the traditional approach.The accuracy without XAI on baseline LR is 79.57%,whereas the approach with XAI on LR is 80.28%.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio...The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.展开更多
Challenges in the diagnosis and treatment of Parkinson’s disease:Parkinson’s disease(PD)is an increasingly prevalent neurodegenerative disease,at first sight primarily characterized by motor symptoms,although non-mo...Challenges in the diagnosis and treatment of Parkinson’s disease:Parkinson’s disease(PD)is an increasingly prevalent neurodegenerative disease,at first sight primarily characterized by motor symptoms,although non-motor symptoms also constitute a major part of the overall phenotype.Clinically,this disease cannot be diagnosed reliably until a large part of the vulnerable dopaminergic neurons has been irretrievably lost,and the disease progresses inexorably.New biological criteria for PD have been proposed recently and might eventually improve early diagnosis,but they require further validation,and their use will initially be restricted to a research environment(Darweesh et al.,2024).展开更多
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external sudden physical force or shock to the head.It is considered a silent public health epidemic causing significant death and disab...Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external sudden physical force or shock to the head.It is considered a silent public health epidemic causing significant death and disability globally.There were 64,000 TBI related deaths reported in the USA in 2020,with about US$76 billion in direct and indirect medical costs annually.展开更多
Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The ...Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease.展开更多
In this article,we discuss Ye et al's recent article on the association between age at diabetes diagnosis and subsequent risk of age-related ocular diseases.The study,which utilized United Kingdom Biobank data,hig...In this article,we discuss Ye et al's recent article on the association between age at diabetes diagnosis and subsequent risk of age-related ocular diseases.The study,which utilized United Kingdom Biobank data,highlighted a strong link between early diabetes onset and major eye conditions,such as cataracts,glaucoma,agerelated macular degeneration,and vision loss,independent of glycemic control and disease duration.This finding challenges the previous belief that diabetic eye disease primarily correlates with hyperglycemia.As lifestyles evolve and the age of diabetes diagnosis decreases,understanding this relationship may reveal the complex pathogenesis underlying diabetes-related complications.This editorial summarizes potential mechanisms connecting the age of diabetes onset with four types of ocular diseases,emphasizing the significance of early diagnosis.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery...Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.展开更多
Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with...Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder.In addition,the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.Evidence suggests that this condition is a multisystem disorder that affects many biological systems,raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder.We performed a PubMed search for microRNAs(miRNAs)in post-traumatic stress disorder(PTSD)that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023.These included four studies with whole blood,seven with peripheral blood mononuclear cells,four with plasma extracellular vesicles/exosomes,and one with serum exosomes.One of these studies had also used whole plasma.Two studies were excluded as they did not involve microRNA biomarkers.Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat,and only two were from recently traumatized adult subjects.In measuring miRNA expression levels,many of the studies had used microarray miRNA analysis,miRNA Seq analysis,or NanoString panels.Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls.The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood;miR-193a-5p,-7113-5p,-125a,-181c,and-671-5p in peripheral blood mononuclear cells;miR-10b-5p,-203a-3p,-4488,-502-3p,-874-3p,-5100,and-7641 in plasma extracellular vesicles/exosomes;and miR-18a-3p and-7-1-5p in blood plasma.Several important limitations identified in the studies need to be taken into account in future studies.Further studies are warranted with war veterans and recently traumatized children,adolescents,and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.展开更多
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa...Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches.展开更多
Sensors,vital elements in data acquisition systems,play a crucial role in various industries.However,their exposure to harsh operating conditions makes them vulnerable to faults that can compromise system performance....Sensors,vital elements in data acquisition systems,play a crucial role in various industries.However,their exposure to harsh operating conditions makes them vulnerable to faults that can compromise system performance.Early fault detection is therefore critical for minimizing downtime and ensuring system reliability.This paper delves into the contemporary landscape of fault diagnosis techniques for sensors,offering valuable insights for researchers and academicians.The papers begin by exploring the different types and causes of sensor faults,followed by a discussion of the various fault diagnosis methods employed in industrial sectors.The advantages and limitations of these methods are carefully examined,paving the way for highlighting current challenges and outlining potential future research directions.This comprehensive review aims to provide a thorough understanding of current advancements in sensor fault diagnosis,enabling readers to stay abreast of the latest developments in this rapidly evolving field.By addressing the challenges and exploring promising research avenues,this paper seeks to contribute to the development of more robust and effective sensor fault diagnosis methods,ultimately improving the reliability and safety of industrial and agricultural systems.展开更多
As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gea...As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gearboxes.Gearbox fault signals usually contain multiple characteristic components and are accompanied by strong noise interference.Traditional sparse modeling methods are based on synthesis models,and there are few studies on analysis and balance models.In this paper,a balance nonconvex regularized sparse decomposition method is proposed,which based on a balance model and an arctangent nonconvex penalty function.The sparse dictionary is constructed by using Tunable Q-Factor Wavelet Transform(TQWT)that satisfies the tight frame condition,which can achieve efficient and fast solution.It is optimized and solved by alternating direction method of multipliers(ADMM)algorithm,and the non-convex regularized sparse decomposition algorithm of synthetic and analytical models are given.Through simulation experiments,the determination methods of regularization parameters and balance parameters are given,and compared with the L1 norm regularization sparse decomposition method under the three models.Simulation analysis and engineering experimental signal analysis verify the effectiveness and superiority of the proposed method.展开更多
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In...Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.展开更多
Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack...Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind.展开更多
Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this pa...Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this paper proposes a fault diagnosis method based on the stacked autoencoder(SAE)and ensembled ResNet-SVM.Furthermore,the time-and frequency-domain features of several co-frequency vibration faults are summarized based on the mechanism analysis and calculated using actual vibration data.To realize and validate the high-precision diagnosis method of rotating equipment with co-frequency faults proposed in this study,the following three criteria are required:First,to improve the effectiveness and robustness of the ensembled model and the sliding window using data augmentation,adding noise,autoencoder(AE)and SAE methods are analyzed in terms of principle and practical effects.Second,ResNet is used as the feature extractor for the ensembled ResNet-SVM model.Feature extraction is carried out twice,and the extracted co-frequency fault features are more comprehensive.Finally,the data augmentation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods.The experimental results show that the accuracy of the proposed method can exceed 99.9%.展开更多
文摘The lithium battery is an essential component of electric cars;prompt and accurate problem detection is vital in guaranteeing electric cars’safe and dependable functioning and addressing the limitations of Back Propagation(BP)neural networks in terms of vanishing gradients and inability to effectively capture dependencies in time series,and the limitations of Long-Short Term Memory(LSTM)neural network models in terms of risk of overfitting.A method based on LSTM-BP is put forward for power battery fault diagnosis to improve the accuracy of lithium battery fault diagnosis.First,a lithium battery model is constructed based on the second-order RC equivalent circuit and the electro-thermal coupling model,and various lithium battery failures are simulated to examine the fault characteristics.Then,the lithium battery charging and discharging experiments collect,clean,and process the battery data.By constructing a neural network LSTM-BP model,we verified the superiority and accuracy of the LSTM-BP neural network model by comparing the LSTM model and BP model vertically and by comparing the Recurrent Neural Network(RNN)model,the Gated Recurrent Unit(GRU)model,and the Residual Neural Network(ResNet)model of a more advanced architecture horizontally.Finally,the lithium battery fault diagnosis process is summarized through the threshold quantitative criteria,and different faults are diagnosed and analyzed.Theresults show that the LSTM-BP neural network not only overcomes the limitations of the LSTMneural network and BP neural network but also improves the ability to process sequence data and reduces the risk of overfitting.
基金supported in part by the National Key R&D Program of China (2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China (52025056)。
文摘Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.
基金support of the National Key Research and Development Program of China(2021YFB4000505).
文摘Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability.
基金supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20210347)。
文摘The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).
基金funded by Woosong University Academic Research 2024.
文摘Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learning models,especially those utilizing complex algorithms like deep learning,have demonstrated major potential in extracting important information fromlarge operational datasets.Despite their efficiency,machine learningmodels face challenges,making Explainable AI(XAI)crucial for improving their understandability and fine-tuning.The importance of feature contribution and selection using XAI in the diagnosis of machine faults is examined in this study.The technique is applied to evaluate different machine-learning algorithms.Extreme Gradient Boosting,Support Vector Machine,Gaussian Naive Bayes,and Random Forest classifiers are used alongside Logistic Regression(LR)as a baseline model because their efficacy and simplicity are evaluated thoroughly with empirical analysis.The XAI is used as a targeted feature selection technique to select among 29 features of the time and frequency domain.The XAI approach is lightweight,trained with only targeted features,and achieved similar results as the traditional approach.The accuracy without XAI on baseline LR is 79.57%,whereas the approach with XAI on LR is 80.28%.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
基金the National Key R&D Program of China(2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China(52025056)+4 种基金the National Natural Science Foundation of China(52305129)the China Postdoctoral Science Foundation(2023M732789)the China Postdoctoral Innovative Talents Support Program(BX20230290)the Open Foundation of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(2022JXKF JJ01)the Fundamental Research Funds for Central Universities。
文摘The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.
文摘Challenges in the diagnosis and treatment of Parkinson’s disease:Parkinson’s disease(PD)is an increasingly prevalent neurodegenerative disease,at first sight primarily characterized by motor symptoms,although non-motor symptoms also constitute a major part of the overall phenotype.Clinically,this disease cannot be diagnosed reliably until a large part of the vulnerable dopaminergic neurons has been irretrievably lost,and the disease progresses inexorably.New biological criteria for PD have been proposed recently and might eventually improve early diagnosis,but they require further validation,and their use will initially be restricted to a research environment(Darweesh et al.,2024).
文摘Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external sudden physical force or shock to the head.It is considered a silent public health epidemic causing significant death and disability globally.There were 64,000 TBI related deaths reported in the USA in 2020,with about US$76 billion in direct and indirect medical costs annually.
基金supported by the National Natural Science Foundation of China,No.32130060(to XG).
文摘Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease.
文摘In this article,we discuss Ye et al's recent article on the association between age at diabetes diagnosis and subsequent risk of age-related ocular diseases.The study,which utilized United Kingdom Biobank data,highlighted a strong link between early diabetes onset and major eye conditions,such as cataracts,glaucoma,agerelated macular degeneration,and vision loss,independent of glycemic control and disease duration.This finding challenges the previous belief that diabetic eye disease primarily correlates with hyperglycemia.As lifestyles evolve and the age of diabetes diagnosis decreases,understanding this relationship may reveal the complex pathogenesis underlying diabetes-related complications.This editorial summarizes potential mechanisms connecting the age of diabetes onset with four types of ocular diseases,emphasizing the significance of early diagnosis.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金Shaanxi Province key Research and Development Plan-Listed project(2022-JBGS-07)。
文摘Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.
文摘Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder.In addition,the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.Evidence suggests that this condition is a multisystem disorder that affects many biological systems,raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder.We performed a PubMed search for microRNAs(miRNAs)in post-traumatic stress disorder(PTSD)that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023.These included four studies with whole blood,seven with peripheral blood mononuclear cells,four with plasma extracellular vesicles/exosomes,and one with serum exosomes.One of these studies had also used whole plasma.Two studies were excluded as they did not involve microRNA biomarkers.Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat,and only two were from recently traumatized adult subjects.In measuring miRNA expression levels,many of the studies had used microarray miRNA analysis,miRNA Seq analysis,or NanoString panels.Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls.The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood;miR-193a-5p,-7113-5p,-125a,-181c,and-671-5p in peripheral blood mononuclear cells;miR-10b-5p,-203a-3p,-4488,-502-3p,-874-3p,-5100,and-7641 in plasma extracellular vesicles/exosomes;and miR-18a-3p and-7-1-5p in blood plasma.Several important limitations identified in the studies need to be taken into account in future studies.Further studies are warranted with war veterans and recently traumatized children,adolescents,and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.
基金supported by the National Natural Science Foundation of China(62073140,62073141)the Shanghai Rising-Star Program(21QA1401800).
文摘Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches.
基金supported by the National Center of Science,Poland under Sheng2 project No.UMO-2021/40/Q/ST8/00024:NonGauMech—New Methods of Processing Non-Stationary Signals (Identification,Segmentation,Extraction,Modeling)with Non-Gaussian Characteristics for the Purpose of Monitoring Complex Mechanical Structures.
文摘Sensors,vital elements in data acquisition systems,play a crucial role in various industries.However,their exposure to harsh operating conditions makes them vulnerable to faults that can compromise system performance.Early fault detection is therefore critical for minimizing downtime and ensuring system reliability.This paper delves into the contemporary landscape of fault diagnosis techniques for sensors,offering valuable insights for researchers and academicians.The papers begin by exploring the different types and causes of sensor faults,followed by a discussion of the various fault diagnosis methods employed in industrial sectors.The advantages and limitations of these methods are carefully examined,paving the way for highlighting current challenges and outlining potential future research directions.This comprehensive review aims to provide a thorough understanding of current advancements in sensor fault diagnosis,enabling readers to stay abreast of the latest developments in this rapidly evolving field.By addressing the challenges and exploring promising research avenues,this paper seeks to contribute to the development of more robust and effective sensor fault diagnosis methods,ultimately improving the reliability and safety of industrial and agricultural systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075353,52007128).
文摘As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gearboxes.Gearbox fault signals usually contain multiple characteristic components and are accompanied by strong noise interference.Traditional sparse modeling methods are based on synthesis models,and there are few studies on analysis and balance models.In this paper,a balance nonconvex regularized sparse decomposition method is proposed,which based on a balance model and an arctangent nonconvex penalty function.The sparse dictionary is constructed by using Tunable Q-Factor Wavelet Transform(TQWT)that satisfies the tight frame condition,which can achieve efficient and fast solution.It is optimized and solved by alternating direction method of multipliers(ADMM)algorithm,and the non-convex regularized sparse decomposition algorithm of synthetic and analytical models are given.Through simulation experiments,the determination methods of regularization parameters and balance parameters are given,and compared with the L1 norm regularization sparse decomposition method under the three models.Simulation analysis and engineering experimental signal analysis verify the effectiveness and superiority of the proposed method.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)the China Postdoctoral Science Foundation(2023M732789)+1 种基金the China Postdoctoral Innovative Talents Support Program(BX20230290)the Fundamental Research Funds for the Central Universities(xzy012022062).
文摘Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.
基金supported in part by the National Natural Science Foundation of China(52105116)Science Center for gas turbine project(P2022-DC-I-003-001)the Royal Society award(IEC\NSFC\223294)to Professor Asoke K.Nandi.
文摘Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind.
基金Supported by National Natural Science Foundation of China (Grant No.51875031)Beijing Municipal Natural Science Foundation (Grant No.3212010)。
文摘Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this paper proposes a fault diagnosis method based on the stacked autoencoder(SAE)and ensembled ResNet-SVM.Furthermore,the time-and frequency-domain features of several co-frequency vibration faults are summarized based on the mechanism analysis and calculated using actual vibration data.To realize and validate the high-precision diagnosis method of rotating equipment with co-frequency faults proposed in this study,the following three criteria are required:First,to improve the effectiveness and robustness of the ensembled model and the sliding window using data augmentation,adding noise,autoencoder(AE)and SAE methods are analyzed in terms of principle and practical effects.Second,ResNet is used as the feature extractor for the ensembled ResNet-SVM model.Feature extraction is carried out twice,and the extracted co-frequency fault features are more comprehensive.Finally,the data augmentation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods.The experimental results show that the accuracy of the proposed method can exceed 99.9%.