A multichannel remote control system for imelligent community based on the STC89C54 chip was designed with the technique of embedded Web server. The control system can monitor 255 signals and eight control signals of ...A multichannel remote control system for imelligent community based on the STC89C54 chip was designed with the technique of embedded Web server. The control system can monitor 255 signals and eight control signals of one node at the same time, and can be connected to the internet by the TCP/IP protocol. So the field control information can be shown dynamically in a remote computer by way of web pages. The system has high convenience and friendly monitoring interface, then especially is fit for the large conamunity and storage that need multipoint monitoring and frequent switching door.展开更多
With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardwa...With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardware/software co-design is a methodology for solving design problems in processor based embedded systems. In this work, we implemented a new 1-cycle pipeline microprocessor and a fast Ethemet transceiver and established a low cost, high performance embedded network controller, and designed a TCP/IP stack to access the Intemet. We discussed the hardware/software architecture in the forepart, and then the whole system-on-a-chip on Altera Stratix EP1S25F780C6 device. Using the FPGA environment and SmartBit tester, we tested the system's throughput. Our simulation results showed that the maximum throughput of Ethemet packets is up to 7 Mbps, that of UDP packets is up to 5.8 Mbps, and that of TCP packets is up to 3.4 Mbps, which showed that this embedded system can easily transmit basic voice and video signals through Ethemet, and that using only one chip can realize that many electronic devices access to the Intemet directly and get high performance.展开更多
This paper puts forward a new scheme of Embedded Numerical Control System based on ARM and DSP,which is at the base of research on traditional numerical control system and embedded technology.And the paper also descri...This paper puts forward a new scheme of Embedded Numerical Control System based on ARM and DSP,which is at the base of research on traditional numerical control system and embedded technology.And the paper also describes the develop- ment of hardware and software platform.All the development and realization are based on the idea of module design.The embed- ded numerical control system,using ARM and DSP to construct the main control platform,realizes the real-time operation of sys- tem and improves the stability and reliability with the modular designing ideas of hardware and software and with the support of embedded real-time operating system(uc/os-Ⅱ).And the system could realize the multi-network supporting,which is also accord with the development of modularization,flexibility and latticing of numerical control system.展开更多
Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of informa...Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of information technology. For this purpose, in this paper, first, we present a type of novel intelligent deep hybrid neural network algorithm based on a deep bidirectional recurrent neural network integrated with a deep backward propagation neural network. It has realized acoustic analysis, speech recognition and natural language understanding for jointly constituting human-machine voice interactions. Second, we design a voice control motherboard using an embedded chip from the ARM series as the core, and the onboard components include ZigBee, RFID, WIFI, GPRS, a RS232 serial port, USB interfaces and so on. Third, we take advantage of algorithms, software and hardware to make machines “understand” human speech and “think” and “comprehend” human intentions to structure critical components for intelligent vehicles, intelligent offices, intelligent service robots, intelligent industries and so on, which furthers the structure of the intelligent ecology of the Internet of Things. At last, the experimental results denote that the study of the semantics interaction controls based on an embedding has a very good effect, fast speed and high accuracy, consequently realizing the intelligent ecology construction of the Internet of Things.展开更多
In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee netw...In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee network, embedded controller and intelligent fuzzy control algorithm as core. With advantages of high precision and stability, the design of sensor circuit mainly employs digital module sensors. In order to save energy, the sensor circuit is controlled by relay switch to work at the proper time. The gateway node is designed by employing high performance 32-digit embedded controller and WinCE6.0 embedded OS is self customized. And embedded SQlite database is realized on WinCE6.0 for effectively managing data. The closed loop control is realized by employing fuzzy control algorithm and the test result shows that the deviation of atmospheric temperature is controlled within ± 0.5° C, the deviation of illumination intensity is controlled within ± 283 LUX, the deviation of CO2 concentration is controlled within ± 24 PPM, the deviation of atmospheric humidity is controlled within ± 13% and that of soil water content is controlled within ± 0.9%, thus all parameters fully meet practical requirements of flower greenhouse.展开更多
Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which...Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.展开更多
In the development of the robotic arm in recent decades, it has been realized to operate the robotic arm according to the design of the software program to complete the corresponding specific work. It can not only wor...In the development of the robotic arm in recent decades, it has been realized to operate the robotic arm according to the design of the software program to complete the corresponding specific work. It can not only work in an environment where people can't work, but also can maintain long hours of the work, with the low failure rate. With the rapid development of the robotic arm research technology, the robotic arm has been widely used in aerospace, medicine, industrial production, anti-terrorism, and explosion and service industries. Due to the strict quality restriction, the rigidity of the robotic arm is low, and there are geometric errors and flexible deformation errors. In order to improve its performances, it is necessary to reduce the end positioning error of the robotic arm by means of the restructuring technology.展开更多
Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded...Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded motion controller becomes the necessity of the market. The major objective of the paper is to establish the basic software and hardware platform of a high-performance, low-cost and universal embedded motion controller and study the application. And the paper proposes the idea of developing a low-cost and economic touchscreen motion controller, which provides valuable reference for the relevant research and development in China.展开更多
This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made usi...This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made using the error and process input parameters in a closed loop system in order to obtain better controller performance for set-point change and load disturbances. This on-line tuning method reduces operator involvement and enhances the controller performance to a wide operating range. The hierarchical control scheme consists of an intelligent upper level supervisory fuzzy controller and a lower level direct fuzzy controller. The upper level controller provides a mechanism to the main goal of the system and the lower level controller delivers the solutions to a particular situation. The control algorithm for the proposed scheme has been developed and tested using an ARM7 microcontroller-based embedded target board for a nonlinear pressure process having dead time. To demonstrate the effectiveness, the results of the proposed hierarchical controller, fuzzy controller and conventional proportional-integral (PI) controller are analyzed. The results prove that the SHFC performance is better in terms of stability and robustness than the conventional control methods.展开更多
文摘A multichannel remote control system for imelligent community based on the STC89C54 chip was designed with the technique of embedded Web server. The control system can monitor 255 signals and eight control signals of one node at the same time, and can be connected to the internet by the TCP/IP protocol. So the field control information can be shown dynamically in a remote computer by way of web pages. The system has high convenience and friendly monitoring interface, then especially is fit for the large conamunity and storage that need multipoint monitoring and frequent switching door.
文摘With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardware/software co-design is a methodology for solving design problems in processor based embedded systems. In this work, we implemented a new 1-cycle pipeline microprocessor and a fast Ethemet transceiver and established a low cost, high performance embedded network controller, and designed a TCP/IP stack to access the Intemet. We discussed the hardware/software architecture in the forepart, and then the whole system-on-a-chip on Altera Stratix EP1S25F780C6 device. Using the FPGA environment and SmartBit tester, we tested the system's throughput. Our simulation results showed that the maximum throughput of Ethemet packets is up to 7 Mbps, that of UDP packets is up to 5.8 Mbps, and that of TCP packets is up to 3.4 Mbps, which showed that this embedded system can easily transmit basic voice and video signals through Ethemet, and that using only one chip can realize that many electronic devices access to the Intemet directly and get high performance.
文摘This paper puts forward a new scheme of Embedded Numerical Control System based on ARM and DSP,which is at the base of research on traditional numerical control system and embedded technology.And the paper also describes the develop- ment of hardware and software platform.All the development and realization are based on the idea of module design.The embed- ded numerical control system,using ARM and DSP to construct the main control platform,realizes the real-time operation of sys- tem and improves the stability and reliability with the modular designing ideas of hardware and software and with the support of embedded real-time operating system(uc/os-Ⅱ).And the system could realize the multi-network supporting,which is also accord with the development of modularization,flexibility and latticing of numerical control system.
文摘Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of information technology. For this purpose, in this paper, first, we present a type of novel intelligent deep hybrid neural network algorithm based on a deep bidirectional recurrent neural network integrated with a deep backward propagation neural network. It has realized acoustic analysis, speech recognition and natural language understanding for jointly constituting human-machine voice interactions. Second, we design a voice control motherboard using an embedded chip from the ARM series as the core, and the onboard components include ZigBee, RFID, WIFI, GPRS, a RS232 serial port, USB interfaces and so on. Third, we take advantage of algorithms, software and hardware to make machines “understand” human speech and “think” and “comprehend” human intentions to structure critical components for intelligent vehicles, intelligent offices, intelligent service robots, intelligent industries and so on, which furthers the structure of the intelligent ecology of the Internet of Things. At last, the experimental results denote that the study of the semantics interaction controls based on an embedding has a very good effect, fast speed and high accuracy, consequently realizing the intelligent ecology construction of the Internet of Things.
文摘In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee network, embedded controller and intelligent fuzzy control algorithm as core. With advantages of high precision and stability, the design of sensor circuit mainly employs digital module sensors. In order to save energy, the sensor circuit is controlled by relay switch to work at the proper time. The gateway node is designed by employing high performance 32-digit embedded controller and WinCE6.0 embedded OS is self customized. And embedded SQlite database is realized on WinCE6.0 for effectively managing data. The closed loop control is realized by employing fuzzy control algorithm and the test result shows that the deviation of atmospheric temperature is controlled within ± 0.5° C, the deviation of illumination intensity is controlled within ± 283 LUX, the deviation of CO2 concentration is controlled within ± 24 PPM, the deviation of atmospheric humidity is controlled within ± 13% and that of soil water content is controlled within ± 0.9%, thus all parameters fully meet practical requirements of flower greenhouse.
基金funded by the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(L212002)the Tsinghua-Toyota Joint Research Fund(20223930096)the Guangdong Provincial Key Area Research and Development Program(2022B0909070001).
文摘Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.
文摘In the development of the robotic arm in recent decades, it has been realized to operate the robotic arm according to the design of the software program to complete the corresponding specific work. It can not only work in an environment where people can't work, but also can maintain long hours of the work, with the low failure rate. With the rapid development of the robotic arm research technology, the robotic arm has been widely used in aerospace, medicine, industrial production, anti-terrorism, and explosion and service industries. Due to the strict quality restriction, the rigidity of the robotic arm is low, and there are geometric errors and flexible deformation errors. In order to improve its performances, it is necessary to reduce the end positioning error of the robotic arm by means of the restructuring technology.
文摘Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded motion controller becomes the necessity of the market. The major objective of the paper is to establish the basic software and hardware platform of a high-performance, low-cost and universal embedded motion controller and study the application. And the paper proposes the idea of developing a low-cost and economic touchscreen motion controller, which provides valuable reference for the relevant research and development in China.
文摘This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made using the error and process input parameters in a closed loop system in order to obtain better controller performance for set-point change and load disturbances. This on-line tuning method reduces operator involvement and enhances the controller performance to a wide operating range. The hierarchical control scheme consists of an intelligent upper level supervisory fuzzy controller and a lower level direct fuzzy controller. The upper level controller provides a mechanism to the main goal of the system and the lower level controller delivers the solutions to a particular situation. The control algorithm for the proposed scheme has been developed and tested using an ARM7 microcontroller-based embedded target board for a nonlinear pressure process having dead time. To demonstrate the effectiveness, the results of the proposed hierarchical controller, fuzzy controller and conventional proportional-integral (PI) controller are analyzed. The results prove that the SHFC performance is better in terms of stability and robustness than the conventional control methods.