Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha...Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.展开更多
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo...Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the...Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality.展开更多
BACKGROUND Flat bone metastases are common in patients with advanced cancers,often resulting in severe pain,limited mobility,and reduced quality of life(QOL).Traditional treatment options,such as radiotherapy or syste...BACKGROUND Flat bone metastases are common in patients with advanced cancers,often resulting in severe pain,limited mobility,and reduced quality of life(QOL).Traditional treatment options,such as radiotherapy or systemic therapies,often fail to provide sufficient pain relief or improve functional outcomes in these patients.Microwave ablation(MWA)offers advantages,such as shorter pro-cedure times and larger ablation zones,while percutaneous osteoplasty(PO)enhances bone stability and prevents pathological fractures.Despite these be-nefits,the combination of these techniques for treating flat bone metastases re-mains underexplored.AIM To evaluate the efficacy and safety of C-arm computed tomography(CT)-guided MWA combined with PO for managing painful flat bone metastases,focusing on pain relief,functional improvement,and QOL enhancement.METHODS A total of 45 patients with refractory moderate-to-severe pain resulting from flat bone metastases who underwent C-arm CT-guided MWA combined with PO between January 2015 and January 2021 were included.The efficacy of the pro-cedure was assessed by changes in the visual analog scale(VAS),Oswestry disability index(ODI),and QOL,as well as the occurrence of complications.Tumor response was evaluated using RECIST v1.1 and mRECIST criteria,with overall response rate(ORR)and disease control rate(DCR)as the primary end-points.RESULTS No serious complications were observed in any of the patients.A significant reduction in VAS and ODI was noted at 1 week,1 month,and 3 months post-procedure.A marked improvement in QOL was observed at all follow-up points.Bone cement extravasation was observed in 10 patients;however,none exhibited significant clinical symptoms.Based on RECIST v1.1,the ORR was 26.7%and the DCR was 88.9%.The mRECIST evaluation revealed a higher ORR of 51.1%and DCR of 88.9%.CONCLUSION C-arm CT-guided MWA with PO provides a dependable and effective strategy for managing flat bone metastases.It demonstrates significant pain relief,improved functional outcomes,and enhanced QOL.This treatment combination also shows promising tumor response rates with a low complication profile.展开更多
As rice consumption increases,ensuring its safety has become a priority for the food industry.To address this concern,the industry is exploring a single-pass microbial inactivation treatment at the rough rice stage.In...As rice consumption increases,ensuring its safety has become a priority for the food industry.To address this concern,the industry is exploring a single-pass microbial inactivation treatment at the rough rice stage.In this study,a long-grain rice variety,RT7321[21.2%wet basis(WB)and a 20 mm bed thickness]was exposed to microwave radiation(915 MHz frequency)at powers of 16,18,and 20 kW for durations of 1,2,and 3 min.We found that the highest microwave power(20 kW)and the longest exposure duration(3 min)produced the greatest reduction in total aerobic count and total fungal count,reducing them by up to 1.21 and 5.01 log(CFU/g),respectively.Our findings provided insights into the used to high-power,shortduration 915 MHz microwave technology for decontamination purposes in rough rice to help improve the microbial safety of rice.The aim is to develop a single-pass drying approach for microbial inactivation in rice processing facilities while ensuring that the yield and quality is not compromised.展开更多
Microwave ablation(MWA)is emerging as a highly effective treatment for colorectal liver metastases(CRLMs).This review explores the advantages of MWA compared to other ablative techniques such as radiofrequency ablatio...Microwave ablation(MWA)is emerging as a highly effective treatment for colorectal liver metastases(CRLMs).This review explores the advantages of MWA compared to other ablative techniques such as radiofrequency ablation and cryoablation and highlights its clinical efficacy,safety,and technical considerations.MWA offers significant benefits,including higher intratumoral temperatures,larger ablation zones,and reduced susceptibility to the heat-sink effect,which make it particularly suitable for tumors near large blood vessels.This review details the patient selection criteria,procedural approaches,and the use of advanced imaging techniques to improve the precision and effectiveness of MWA.Clinical outcomes indicate that MWA achieves high rates of complete tumor ablation and long-term survival with a favorable safety profile.This review is significant because it provides updated insights into the expanding role of MWA in treating unresectable CRLM and its potential as an alternative to surgical resection for resectable tumors.By summarizing recent studies and clinical trials,this review highlights the comparative effectiveness,safety,and integration with systemic therapies of MWA.In conclusion,MWA is a promising treatment option for CRLM and offers outcomes comparable to or better than those of other ablative techniques.Future research should focus on optimizing technical parameters,integrating MWA with systemic therapies,and conducting large-scale randomized controlled trials to establish standardized treatment protocols.Advancing our understanding of MWA will enhance its application and improve long-term survival and quality of life for patients with CRLM.展开更多
BACKGROUND Liver cancer is one of the most common malignant tumors of the digestive system,and early detection and effective treatment are crucial for improving the prognosis.Microwave ablation(MWA)has shown promising...BACKGROUND Liver cancer is one of the most common malignant tumors of the digestive system,and early detection and effective treatment are crucial for improving the prognosis.Microwave ablation(MWA)has shown promising results as a local therapeutic method for liver cancer;however,further improvement of its efficacy remains a key focus of current research.AIM To evaluate the clinical efficacy of Linggui Zhugan decoction combined with MWA for the treatment of primary liver cancer.METHODS Data were collected from 164 patients with primary liver cancer who underwent MWA at our hospital between March 2019 and April 2021.Among them,79 patients(control group)received routine treatments and 85 patients(research group)received Linggui Zhugan decoction in addition to routine treatment.The clinical efficacy,incidence of adverse reactions,and levels of serum alphafetoprotein(AFP),des-γ-carboxy prothrombin(DCP),AFP-L3,total bilirubin(TBil),alanine aminotransferase(ALT),CD4 cell count,CD8 cell count,and CD4/CD8 ratio were compared between the two groups,before and after treatment.The three-year recurrence rates between the two groups were compared,and independent prognostic factors for recurrence were identified.RESULTS The study results revealed that the objective response rate(ORR)in the research group was significantly higher than that in the control group(P=0.005).After treatment,the CD4 cell count and CD4/CD8 ratio significantly increased,whereas the CD8 cell count and TBil,ALT,AFP,DCP,and AFP-L3 Levels were significantly lower in the research group than in the control group(P<0.001).The Cox regression analysis revealed that the treatment regimen(P=0.003),presence of cirrhosis(P=0.019),tumor diameter(P=0.037),Child-Pugh score(P=0.003),pretreatment AFP level(P=0.006),and AFP-L3 Level(P=0.002)were independent prognostic factors for disease-free survival.CONCLUSION The combination of Linggui Zhugan decoction with MWA significantly improved the clinical efficacy and longterm prognosis of patients with primary liver cancer.展开更多
The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the i...The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.展开更多
BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patient...BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patients undergoing hepatectomies.AIM To determine the short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function.METHODS Clinical data from patients with liver cancer admitted to Suzhou Ninth People’s Hospital from January 2020 to December 2023 were retrospectively analyzed.Thirty-five patients underwent laparoscopic hepatectomy for liver cancer(liver cancer resection group)and 35 patients underwent medical image-guided microwave ablation(liver cancer ablation group).The short-term efficacy,complications,liver function,and immune function indices before and after treatment were compared between the two groups.RESULTS One month after treatment,19 patients experienced complete remission(CR),8 patients experienced partial remission(PR),6 patients experienced stable disease(SD),and 2 patients experienced disease progression(PD)in the liver cancer resection group.In the liver cancer ablation group,21 patients experienced CR,9 patients experienced PR,3 patients experienced SD,and 2 patients experienced PD.No significant differences in efficacy and complications were detected between the liver cancer ablation and liver cancer resection groups(P>0.05).After treatment,total bilirubin(41.24±7.35 vs 49.18±8.64μmol/L,P<0.001),alanine aminotransferase(30.85±6.23 vs 42.32±7.56 U/L,P<0.001),CD4+(43.95±5.72 vs 35.27±5.56,P<0.001),CD8+(20.38±3.91 vs 22.75±4.62,P<0.001),and CD4+/CD8+(2.16±0.39 vs 1.55±0.32,P<0.001)were significantly different between the liver cancer ablation and liver cancer resection groups.CONCLUSION The short-term efficacy and safety of microwave ablation and laparoscopic surgery for the treatment of liver cancer are similar,but liver function recovers quickly after microwave ablation,and microwave ablation may enhance immune function.展开更多
This study develops low-fat microwaved peanut snacks(LMPS)using partially defatted peanuts(PDP)with different defatting ratios,catering to people’s pursuit of healthy,low-fat cuisine.The effects of defatting treatmen...This study develops low-fat microwaved peanut snacks(LMPS)using partially defatted peanuts(PDP)with different defatting ratios,catering to people’s pursuit of healthy,low-fat cuisine.The effects of defatting treatment on the structural characteristics,texture,color,and nutrient composition of LMPS were comprehensively explored.The structural characteristics of LMPS were characterized using X-ray micro-computed tomography(Micro-CT)and scanning electron microscope(SEM).The results demonstrated that the porosity,pore number,pore volume,brightness,brittleness,protein content,and total sugar content of LMPS all significantly increased(P<0.05)with the increase in the defatting ratio.At the micro level,porous structure,cell wall rupture,and loss of intracellular material could be observed in LMPS after defatting treatments.LMPS made from PDP with a defatting ratio of 64.44%had the highest internal pore structural parameters(porosity 59%,pore number 85.3×10^(5),pore volume 68.23 mm3),the brightest color(L^(*) 78.39±0.39),the best brittleness(3.64±0.21)mm^(–1)),and the best nutrition(high protein content,(34.02±0.38)%;high total sugar content,(17.45±0.59)%;low-fat content,(27.58±0.85)%).The study provides a theoretical basis for the quality improvement of LMPS.展开更多
[Objective] To study the effects of microwave blanching treatment on POD activity and crispness in Capsicum frutescens L., and to compare the effects of microwave blanching method, normal blanching method, boiling wat...[Objective] To study the effects of microwave blanching treatment on POD activity and crispness in Capsicum frutescens L., and to compare the effects of microwave blanching method, normal blanching method, boiling water blanching and steam blanching. [Methods] In order to obtain the optimal condition for microwave blanching, response surface methodology was used to construct a quadratic regression model describing the effects of microwave power, microwave time and calcium lactate concentration on the POD activity in C. frutescens. [Results] The optimal technology was obtained based on central composite design: 525 W microwave power, 64.5 s microwave time, and 0.08% calcium lactate concentration. Under this condition, POD enzyme activity of C. frutescens was desactivated and crispness of C. frutescens was 68.77 N. [Conclusions] This research would provide references for the crispness protection and enzyme deactivation of C. frutescens.展开更多
Objective: To investigate the efficacy of combina-tion of circumcision and microwave on genital wartsin uncircumcised men. Methods: A randomized, prospective study of 109uncircumcised adult men with genital warts was ...Objective: To investigate the efficacy of combina-tion of circumcision and microwave on genital wartsin uncircumcised men. Methods: A randomized, prospective study of 109uncircumcised adult men with genital warts was con-ducted in a STD clinic in Zhanjiang, Guangdong. Onegroup (n=54) received microwave therapy only, whilethe other group (n=55) was taken the combination ofcircumcision and microwave therapy. The recurrenceswere observed at the end of months 3, 6 and 12, andoperative complications were also recorded. Results: There were no significant differences inthe mean age and duration of the disease between twogroups (P>0.05). No serious operative complicationswere documented. The recurrence rate in circumci-sion plus microwave group was markedly lower thanthat in microwave group (12.7% vs 29.6%, P<0.05),while the differences in early and late recurrencesbetween two groups showed no statistical significance(P>0.05). Conclusion: Circumcision can be safely performedunder local anesthesia in an outpatient setting. Com-bination of circumcision and microwave can produceexcellent effect as well as less tissue damage,therefore, it may be ideal for uncircumcised patientswith extensive condylomas.展开更多
High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow ...High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy.展开更多
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol...Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,e...The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern.In this work,rare-earth La^(3+)and non-magnetic Zr^(4+)ions are simultaneously incorporated into M-type barium ferrite(BaM)to intentionally manipulate the multi-magnetic resonance behavior.By leveraging the contrary impact of La^(3+)and Zr^(4+)ions on magnetocrystalline anisotropy field,the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated.The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe^(3+)and Fe^(2+)ions.Additionally,Mosbauer spectra analysis,first-principle calculations,and least square fitting collectively identify that additional La^(3+)doping leads to a profound rearrangement of Zr^(4+)occupation and thus makes the portion of polarization/conduction loss increase gradually.As a consequence,the La^(3+)-Zr^(4+)co-doped BaM achieves an ultra-broad bandwidth of 12.5+GHz covering from 27.5 to 40+GHz,which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz.展开更多
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ...The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.展开更多
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine...Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.展开更多
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
基金supported by the National Natural Science Foundation of China(No.52373280,52177014,51977009,52273257)。
文摘Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
基金financial support from the National Nature Science Foundation of China(No.52273247)the National Science and Technology Major Project of China(J2019-VI-0017-0132).
文摘Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
基金supported by the Key Scientific and Technological Research Projects of Henan Province (Grant No. 202102110133)Special Innovation Fund of Henan Agricultural University (Grant No. KJCX2019C04)。
文摘Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality.
文摘BACKGROUND Flat bone metastases are common in patients with advanced cancers,often resulting in severe pain,limited mobility,and reduced quality of life(QOL).Traditional treatment options,such as radiotherapy or systemic therapies,often fail to provide sufficient pain relief or improve functional outcomes in these patients.Microwave ablation(MWA)offers advantages,such as shorter pro-cedure times and larger ablation zones,while percutaneous osteoplasty(PO)enhances bone stability and prevents pathological fractures.Despite these be-nefits,the combination of these techniques for treating flat bone metastases re-mains underexplored.AIM To evaluate the efficacy and safety of C-arm computed tomography(CT)-guided MWA combined with PO for managing painful flat bone metastases,focusing on pain relief,functional improvement,and QOL enhancement.METHODS A total of 45 patients with refractory moderate-to-severe pain resulting from flat bone metastases who underwent C-arm CT-guided MWA combined with PO between January 2015 and January 2021 were included.The efficacy of the pro-cedure was assessed by changes in the visual analog scale(VAS),Oswestry disability index(ODI),and QOL,as well as the occurrence of complications.Tumor response was evaluated using RECIST v1.1 and mRECIST criteria,with overall response rate(ORR)and disease control rate(DCR)as the primary end-points.RESULTS No serious complications were observed in any of the patients.A significant reduction in VAS and ODI was noted at 1 week,1 month,and 3 months post-procedure.A marked improvement in QOL was observed at all follow-up points.Bone cement extravasation was observed in 10 patients;however,none exhibited significant clinical symptoms.Based on RECIST v1.1,the ORR was 26.7%and the DCR was 88.9%.The mRECIST evaluation revealed a higher ORR of 51.1%and DCR of 88.9%.CONCLUSION C-arm CT-guided MWA with PO provides a dependable and effective strategy for managing flat bone metastases.It demonstrates significant pain relief,improved functional outcomes,and enhanced QOL.This treatment combination also shows promising tumor response rates with a low complication profile.
基金supported, in part, by the United States Department of Agriculture National Institute of Food and Agriculture Hatch Act Fundingthe University of Arkansas Grain and Rice Processing Program, USA
文摘As rice consumption increases,ensuring its safety has become a priority for the food industry.To address this concern,the industry is exploring a single-pass microbial inactivation treatment at the rough rice stage.In this study,a long-grain rice variety,RT7321[21.2%wet basis(WB)and a 20 mm bed thickness]was exposed to microwave radiation(915 MHz frequency)at powers of 16,18,and 20 kW for durations of 1,2,and 3 min.We found that the highest microwave power(20 kW)and the longest exposure duration(3 min)produced the greatest reduction in total aerobic count and total fungal count,reducing them by up to 1.21 and 5.01 log(CFU/g),respectively.Our findings provided insights into the used to high-power,shortduration 915 MHz microwave technology for decontamination purposes in rough rice to help improve the microbial safety of rice.The aim is to develop a single-pass drying approach for microbial inactivation in rice processing facilities while ensuring that the yield and quality is not compromised.
基金Supported by the Joint Medical Scientific Research Project of Chongqing Science and Technology Committee and Chongqing Health Committee,No.2021MSXM308.
文摘Microwave ablation(MWA)is emerging as a highly effective treatment for colorectal liver metastases(CRLMs).This review explores the advantages of MWA compared to other ablative techniques such as radiofrequency ablation and cryoablation and highlights its clinical efficacy,safety,and technical considerations.MWA offers significant benefits,including higher intratumoral temperatures,larger ablation zones,and reduced susceptibility to the heat-sink effect,which make it particularly suitable for tumors near large blood vessels.This review details the patient selection criteria,procedural approaches,and the use of advanced imaging techniques to improve the precision and effectiveness of MWA.Clinical outcomes indicate that MWA achieves high rates of complete tumor ablation and long-term survival with a favorable safety profile.This review is significant because it provides updated insights into the expanding role of MWA in treating unresectable CRLM and its potential as an alternative to surgical resection for resectable tumors.By summarizing recent studies and clinical trials,this review highlights the comparative effectiveness,safety,and integration with systemic therapies of MWA.In conclusion,MWA is a promising treatment option for CRLM and offers outcomes comparable to or better than those of other ablative techniques.Future research should focus on optimizing technical parameters,integrating MWA with systemic therapies,and conducting large-scale randomized controlled trials to establish standardized treatment protocols.Advancing our understanding of MWA will enhance its application and improve long-term survival and quality of life for patients with CRLM.
文摘BACKGROUND Liver cancer is one of the most common malignant tumors of the digestive system,and early detection and effective treatment are crucial for improving the prognosis.Microwave ablation(MWA)has shown promising results as a local therapeutic method for liver cancer;however,further improvement of its efficacy remains a key focus of current research.AIM To evaluate the clinical efficacy of Linggui Zhugan decoction combined with MWA for the treatment of primary liver cancer.METHODS Data were collected from 164 patients with primary liver cancer who underwent MWA at our hospital between March 2019 and April 2021.Among them,79 patients(control group)received routine treatments and 85 patients(research group)received Linggui Zhugan decoction in addition to routine treatment.The clinical efficacy,incidence of adverse reactions,and levels of serum alphafetoprotein(AFP),des-γ-carboxy prothrombin(DCP),AFP-L3,total bilirubin(TBil),alanine aminotransferase(ALT),CD4 cell count,CD8 cell count,and CD4/CD8 ratio were compared between the two groups,before and after treatment.The three-year recurrence rates between the two groups were compared,and independent prognostic factors for recurrence were identified.RESULTS The study results revealed that the objective response rate(ORR)in the research group was significantly higher than that in the control group(P=0.005).After treatment,the CD4 cell count and CD4/CD8 ratio significantly increased,whereas the CD8 cell count and TBil,ALT,AFP,DCP,and AFP-L3 Levels were significantly lower in the research group than in the control group(P<0.001).The Cox regression analysis revealed that the treatment regimen(P=0.003),presence of cirrhosis(P=0.019),tumor diameter(P=0.037),Child-Pugh score(P=0.003),pretreatment AFP level(P=0.006),and AFP-L3 Level(P=0.002)were independent prognostic factors for disease-free survival.CONCLUSION The combination of Linggui Zhugan decoction with MWA significantly improved the clinical efficacy and longterm prognosis of patients with primary liver cancer.
基金Projects(52175373,52005516)supported by the National Natural Science Foundation of ChinaProject(2018YFA0702800)supported by the National Key Basic Research Program,ChinaProject(ZZYJKT2021-03)supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China。
文摘The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.
文摘BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patients undergoing hepatectomies.AIM To determine the short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function.METHODS Clinical data from patients with liver cancer admitted to Suzhou Ninth People’s Hospital from January 2020 to December 2023 were retrospectively analyzed.Thirty-five patients underwent laparoscopic hepatectomy for liver cancer(liver cancer resection group)and 35 patients underwent medical image-guided microwave ablation(liver cancer ablation group).The short-term efficacy,complications,liver function,and immune function indices before and after treatment were compared between the two groups.RESULTS One month after treatment,19 patients experienced complete remission(CR),8 patients experienced partial remission(PR),6 patients experienced stable disease(SD),and 2 patients experienced disease progression(PD)in the liver cancer resection group.In the liver cancer ablation group,21 patients experienced CR,9 patients experienced PR,3 patients experienced SD,and 2 patients experienced PD.No significant differences in efficacy and complications were detected between the liver cancer ablation and liver cancer resection groups(P>0.05).After treatment,total bilirubin(41.24±7.35 vs 49.18±8.64μmol/L,P<0.001),alanine aminotransferase(30.85±6.23 vs 42.32±7.56 U/L,P<0.001),CD4+(43.95±5.72 vs 35.27±5.56,P<0.001),CD8+(20.38±3.91 vs 22.75±4.62,P<0.001),and CD4+/CD8+(2.16±0.39 vs 1.55±0.32,P<0.001)were significantly different between the liver cancer ablation and liver cancer resection groups.CONCLUSION The short-term efficacy and safety of microwave ablation and laparoscopic surgery for the treatment of liver cancer are similar,but liver function recovers quickly after microwave ablation,and microwave ablation may enhance immune function.
基金funded by the National Natural Science Foundation of China(NSFC,U21A20270)the Key R&D Program of Shandong Province,China(2023TZXD074)+2 种基金the Bingtuan Science and Technology Program,China(2023AB002)the National Peanut Industry Technology System of China(CARS-13-08B)the National Key R&D Program of China(2021YFD2100402)。
文摘This study develops low-fat microwaved peanut snacks(LMPS)using partially defatted peanuts(PDP)with different defatting ratios,catering to people’s pursuit of healthy,low-fat cuisine.The effects of defatting treatment on the structural characteristics,texture,color,and nutrient composition of LMPS were comprehensively explored.The structural characteristics of LMPS were characterized using X-ray micro-computed tomography(Micro-CT)and scanning electron microscope(SEM).The results demonstrated that the porosity,pore number,pore volume,brightness,brittleness,protein content,and total sugar content of LMPS all significantly increased(P<0.05)with the increase in the defatting ratio.At the micro level,porous structure,cell wall rupture,and loss of intracellular material could be observed in LMPS after defatting treatments.LMPS made from PDP with a defatting ratio of 64.44%had the highest internal pore structural parameters(porosity 59%,pore number 85.3×10^(5),pore volume 68.23 mm3),the brightest color(L^(*) 78.39±0.39),the best brittleness(3.64±0.21)mm^(–1)),and the best nutrition(high protein content,(34.02±0.38)%;high total sugar content,(17.45±0.59)%;low-fat content,(27.58±0.85)%).The study provides a theoretical basis for the quality improvement of LMPS.
基金Supported by the Key Project of Chongqing City(cstc2014yykfA0030)~~
文摘[Objective] To study the effects of microwave blanching treatment on POD activity and crispness in Capsicum frutescens L., and to compare the effects of microwave blanching method, normal blanching method, boiling water blanching and steam blanching. [Methods] In order to obtain the optimal condition for microwave blanching, response surface methodology was used to construct a quadratic regression model describing the effects of microwave power, microwave time and calcium lactate concentration on the POD activity in C. frutescens. [Results] The optimal technology was obtained based on central composite design: 525 W microwave power, 64.5 s microwave time, and 0.08% calcium lactate concentration. Under this condition, POD enzyme activity of C. frutescens was desactivated and crispness of C. frutescens was 68.77 N. [Conclusions] This research would provide references for the crispness protection and enzyme deactivation of C. frutescens.
文摘Objective: To investigate the efficacy of combina-tion of circumcision and microwave on genital wartsin uncircumcised men. Methods: A randomized, prospective study of 109uncircumcised adult men with genital warts was con-ducted in a STD clinic in Zhanjiang, Guangdong. Onegroup (n=54) received microwave therapy only, whilethe other group (n=55) was taken the combination ofcircumcision and microwave therapy. The recurrenceswere observed at the end of months 3, 6 and 12, andoperative complications were also recorded. Results: There were no significant differences inthe mean age and duration of the disease between twogroups (P>0.05). No serious operative complicationswere documented. The recurrence rate in circumci-sion plus microwave group was markedly lower thanthat in microwave group (12.7% vs 29.6%, P<0.05),while the differences in early and late recurrencesbetween two groups showed no statistical significance(P>0.05). Conclusion: Circumcision can be safely performedunder local anesthesia in an outpatient setting. Com-bination of circumcision and microwave can produceexcellent effect as well as less tissue damage,therefore, it may be ideal for uncircumcised patientswith extensive condylomas.
基金This work was financially supported by the National Natural Science Foundation of China(52130510,62071120,52075097,52205454,52375413)the Natural Science Foundation of Jiangsu Province(BE2022066,BZ2023043,BK20202006,BK20211562)Science and Technology Program of Suzhou,Jiangsu Province,China(SYG202302).
文摘High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy.
基金financial support from National Key R&D Program of China(MoST,2020YFA0711500)the National Natural Science Foundation of China(NSFC,21875114),(NSFC,52303348)+1 种基金111 Project(B18030)“The Fundamental Research Funds for the Central Universities”,Nankai University.
文摘Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
基金supported by the National Natural Science Foundation of China(Nos.:52271180,51802155,12304020)National Key R&D Program of China(No.:2021YFB3502500)+2 种基金Natural Science Foundation of Jiangsu Province(BK20230909)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionsthe Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics.
文摘The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern.In this work,rare-earth La^(3+)and non-magnetic Zr^(4+)ions are simultaneously incorporated into M-type barium ferrite(BaM)to intentionally manipulate the multi-magnetic resonance behavior.By leveraging the contrary impact of La^(3+)and Zr^(4+)ions on magnetocrystalline anisotropy field,the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated.The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe^(3+)and Fe^(2+)ions.Additionally,Mosbauer spectra analysis,first-principle calculations,and least square fitting collectively identify that additional La^(3+)doping leads to a profound rearrangement of Zr^(4+)occupation and thus makes the portion of polarization/conduction loss increase gradually.As a consequence,the La^(3+)-Zr^(4+)co-doped BaM achieves an ultra-broad bandwidth of 12.5+GHz covering from 27.5 to 40+GHz,which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz.
基金financial support from the National Natural Science Foundation of China (52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing (STRZ202203)the financial support provided by the China Scholarship Council (CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship,Australia。
文摘The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.
基金financial support from the National Natural Science Foundation of China(52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing(STRZ202203)the financial support provided by the China Scholarship Council(CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship。
文摘Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.