Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a pie...Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.展开更多
The piezoelectric materials are used to investigate the active vibration control of ordered/disordered periodic two-span beams. The equation of motion of each sub-beam with piezoelectric patches is established based o...The piezoelectric materials are used to investigate the active vibration control of ordered/disordered periodic two-span beams. The equation of motion of each sub-beam with piezoelectric patches is established based on Hamilton's principle with an assumed mode method. The velocity feedback control algorithm is used to design the controller. The free and forced vibration behaviors of the two-span beams with the piezoelectric actuators and sensors are analyzed. The vibration properties of the disordered two-span beams caused by misplacing the middle support are also researched. In addition, the effects of the length disorder degree on the vibration performances of the disordered beams are investigated. From the numerical results, it can be concluded that the disorder in the length of the periodic two-span beams will cause vibration localizations of the free and forced vibrations of the structure, and the vibration localization phenomenon will be more and more obvious when the length difference between the two sub-beams increases. Moreover, when the velocity feedback control is used, both the forced and the free vibrations will be suppressed. Meanwhile, the vibration behaviors of the two-span beam are tuned.展开更多
Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. T...Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.展开更多
A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of ...A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.展开更多
In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope...In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.展开更多
An experimental investigation was performed for active control of coherent structure bursting in the near-wall region of the turbulent boundary layer. By means of synchronous and asynchronous vibrations with double pi...An experimental investigation was performed for active control of coherent structure bursting in the near-wall region of the turbulent boundary layer. By means of synchronous and asynchronous vibrations with double piezoelectric vibrators, the influence of periodic vibration of the double piezoelectric vibrators on the mean velocity profile, drag reduction rate, and coherent structure bursting is analyzed at Reo = 2766. The case with 100 V/160 Hz-ASYN is superior to other conditions in the experiment and a relative drag reduction rate of 18.54% is exciting. Asynchronous vibration is more effective than synchronous vibration in drag reduction at the same voltage and frequency. In all controlled cases, coherent structures at large scales are regulated while the small-scale structures are stimulated. The fluctuating velocity increases significantly. A periodic regulating effect on the coherent structure can be seen in the ASYN control conditions at the frequency of 160 Hz.展开更多
The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of...The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.展开更多
Structural vibration control was an active research area for the past twenty years because of their potential applications in aerospace structures,civil structures,naval structures,etc.Semi-active vibration control me...Structural vibration control was an active research area for the past twenty years because of their potential applications in aerospace structures,civil structures,naval structures,etc.Semi-active vibration control methods based on piezoelectric actuators and synchronized switch damping on inductance(SSDI) techniques attract the attention of many researchers recently due to their advantages over passive and active methods.In the SSDI method,a switch shunt circuit is connected to the piezoelectric patch to shift the phase and amplify the magnitude of the voltage on the piezoelectric patch.The most important issue in SSDI method is to control the switching actions synchronously with the maximum vibration displacement or maximum strain.Hence,usually a displacement sensor is used to measure the vibration displacement or a collocated piezoelectric sensor is needed to measure the strain of the structure near the piezoelectric actuator.A self-sensing SSDI approach is proposed and applied to the vibration control of a composite beam,which avoids using a separate sensor.In the self-sensing technique,the same piezoelectric element functions as both a sensor and an actuator so that the total number of required piezoelectric elements can be reduced.One problem in the self-sensing actuator,which is the same as that in the traditional collocated piezoelectric sensors,is the noise generated in the sensor signal by the impact of voltage inversion,which may cause extra switching actions and deteriorate control performance.In order to prevent the shunt circuit from over-frequent on-and-off actions,a simple switch control algorithm is proposed.The results of control experiments show that the self-sensing SSDI approach combined with the improved switch control algorithm can effectively suppress over-frequent switching actions and gives good control performance by reducing the vibration amplitude by 45%,about 50% improvement from the traditional SSDI with a separate piezoelectric element and a classical switch.展开更多
In this paper numerical simulations of active vibration control for conical shell structure with dis-tributed piezoelectric actuators is presented.The dynamic equations of conical shell structure are derivedusing the ...In this paper numerical simulations of active vibration control for conical shell structure with dis-tributed piezoelectric actuators is presented.The dynamic equations of conical shell structure are derivedusing the finite element model (FEM) based on Mindlin's plate theory.The results of modal calculationswith FEM model are accurate enough for engineering applications in comparison with experiment results.The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary conditionfor estimating the control force.The independent modal space control (IMSC) method is adopted and theoptimal linear quadratic state feedback control is implemented so that the best control performance withthe least control cost can be achieved.Optimal control effects are compared with controlled responses withother non-optimal control parameters.Numerical simulation results are given to demonstrate the effective-ness of the control scheme.展开更多
Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Ha...Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Hamilton's principle, the higher- order shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations, and the strain energy equivalence theory. A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation. Influence of the piezoelectric layers' location on the vibration control is in- vestigated. In addition, effects of the degree and location of damage on the sensor output voltage are discussed. A method for damage detection is introduced.展开更多
The vibration stability and the active control of the parametrically excited nonlinear beam structures are studied by using the piezoelectric material. The velocity feedback control algorithm is used to obtain the act...The vibration stability and the active control of the parametrically excited nonlinear beam structures are studied by using the piezoelectric material. The velocity feedback control algorithm is used to obtain the active damping. The cubic aonlineax equation of motion with damping is established by employing Hamilton's principle. The multiple-scale method is used to solve the equation of motion, and the stable region is obtained. The effects of the control gain and the amplitude of the external force on the stable region and the amplitude-frequency curve axe analyzed numerically. From the numerical results, it is seen that, with the increase in the feedback control gain, the axial force, to which the structure can be subjected, is increased, and in a certain scope, the structural active damping ratio is also increased. With the increase in the control gain, the response amplitude decreases gradually, but the required control voltage exists a peak value.展开更多
A new nonlinear integral resonant controller(NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides ad...A new nonlinear integral resonant controller(NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce highamplitude nonlinear vibration around the fundamental resonance frequency. The method of multiple scales is used to obtain an approximate solution for the closed-loop system.Then closed-loop system stability is investigated using the resulting modulation equation. Finally, the effects of different control system parameters are illustrated and an approximate solution response is verified via numerical simulation results.The advantages and disadvantages of the proposed controller are presented and extensively discussed in the results. The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode,unlike conventional second-order compensation methods.This makes the NIRC controlled system robust to excitation frequency variations.展开更多
Electrically Controlled Rotor(ECR),also called as swashplateless rotor,applies blade pitch inputs via trailing-edge flaps system instead of traditional swashplate mechanism.In addition to primary control,rotor vibrati...Electrically Controlled Rotor(ECR),also called as swashplateless rotor,applies blade pitch inputs via trailing-edge flaps system instead of traditional swashplate mechanism.In addition to primary control,rotor vibration reduction and noise alleviation are also achievable via applying higher harmonic control inputs with the trailing-edge flaps.In this paper,the feasibility of ECR to reduce vibration and noise actively is verified experimentally.Firstly,the test scheme of ECR active vibration and noise control is proposed,and the ECR test platform is modified according to the test scheme.Then,an adaptive control algorithm based on Kalman filter is developed.Lastly,hover and wind tunnel tests is performed to verify the feasibility of ECR active vibration and noise control.The results demonstrate that the ECR are effective for reducing rotor vibration and noise simultaneously.In the hover condition,the ECR can reduce the in-plane hub vibration by 42%and the inplane noise by 4dB.In wind tunnel condition,ECR can reduce the hub vibration by 75%and the BVI noise by 3dB.展开更多
In order to manipulate the large-scale coherent structures in the wall-bounded turbulence and reduce the skin-friction,an active-control experimental investigation is performed by using the synchronous and asynchronou...In order to manipulate the large-scale coherent structures in the wall-bounded turbulence and reduce the skin-friction,an active-control experimental investigation is performed by using the synchronous and asynchronous vibrations of double piezoelectric vibrators embedded spanwisely on a smooth flat plate surface.A TSI-IFA300 hot-wire anemometer and a TSI-1621 A-Tl.5 hot-wire probe are used to measure the time series of the instantaneous velocity at different locations.The influences of the vibrations on the wall-bounded turbulence are compared in a multi-scale point of view.A disturbance Reynolds Number Red=pd2 f/μis introduced to represent the disturbance.A probability density functions(PDFs)of the multi-scale components of the turbulence velocity and the multi-scale conditional phase-averaged waveform are studied in detail using the wavelet transform.The results show that the maximum drag reduction rate 18.54%is obtained at 100 V/160 Hz and Red=0.54 in the asynchronous vibration mode.The disturbances generated by the vibrators have a significant influence on the sweep events of the burst.The asynchronous vibration model is more effective than the synchronous vibration one.A possible physical mechanism is suggested to explain why the disturbance frequency of 160 Hz leads to an optimal parameter set for the drag reduction.展开更多
This paper aims at modeling and developing vibration control methods for a flexible piezoelectric beam. A collocated sensor/actuator placement is used. Finite element analysis (FEA) method is adopted to derive the d...This paper aims at modeling and developing vibration control methods for a flexible piezoelectric beam. A collocated sensor/actuator placement is used. Finite element analysis (FEA) method is adopted to derive the dynamics model of the system. A back propagation neural network (BPNN) based proportional-derivative (PD) algorithm is applied to suppress the vibration. Simulation and experiments are conducted using the FEA model and BPNN-PD control law. Experimental results show good agreement with the simulation results using finite element modeling and the neural network control algorithm.展开更多
This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz met...This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz method, the equation of motion for the resulting electromechani- cal coupling system is derived. A velocity feedback control rule is employed to obtain an effective active damping in the suppression of random vibration. The power spectral density and mean- square displacements of the random vibration for laminated plates under different control gains are simulated and the validity of the present control strategy is confirmed. The effect of piezoelec- tric fiber orientation in the PFRC layer on the random vibration suppression is also investigated. The analytical methodology can be expanded to other kinds of random vibration.展开更多
This paper presents a comprehensive overview of the principal features of smart panels equipped with feed-forward and feedback systems for the control of the flexural response and sound transmission due respectively t...This paper presents a comprehensive overview of the principal features of smart panels equipped with feed-forward and feedback systems for the control of the flexural response and sound transmission due respectively to tonal and to stochastic broadband disturbances.The smart panels are equipped with two types of actuators:first,distributed piezoelectric actuators formed either by small piezoelectric patches or large piezoelectric films bonded on the panels and second,point actuators formed by proof-mass electromagnetic transducers.Also,the panels encompass three types of sensors:first,small capacitive microphone sensors placed in front of the panels;second,distributed piezoelectric sensors formed by large piezoelectric films bonded on the panels and third point sensors formed by miniaturized accelerometers.The proposed systems implement both single-channel and multi-channel feed-forward and feedback control architectures.The study shows that,the vibration and sound radiation control performance of both feed-forward and feedback systems critically depends on the sensor-actuator configurations.展开更多
滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法是主动噪声控制系统中常用的算法,对中低频噪声有较好的控制作用,但在某些环境噪声中传统的算法可能达不到期望的抑制效果。提出一种基于sigmoid变换的滤波-x四元数最小均方算法...滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法是主动噪声控制系统中常用的算法,对中低频噪声有较好的控制作用,但在某些环境噪声中传统的算法可能达不到期望的抑制效果。提出一种基于sigmoid变换的滤波-x四元数最小均方算法,该算法利用四元数的空间特性使噪声信号在超复数域内部相互耦合和关联,并通过sigmoid函数对误差信号进行非线性变换来约束噪声信号以减低对权值更新的影响力度,避免权值在更新过程中发散,从而实现优异的收敛性能以及增强的鲁棒性。同时通过研究步长分析该算法的稳态特性,并在汽车、工厂噪声环境下验证提出算法性能的优越性,仿真结果支持了该结论。展开更多
文摘Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.
基金Project supported by the National Basic Research Program of China(973 Program)(No.2011CB711100)the National Natural Science Foundation of China(Nos.10672017 and11172084)
文摘The piezoelectric materials are used to investigate the active vibration control of ordered/disordered periodic two-span beams. The equation of motion of each sub-beam with piezoelectric patches is established based on Hamilton's principle with an assumed mode method. The velocity feedback control algorithm is used to design the controller. The free and forced vibration behaviors of the two-span beams with the piezoelectric actuators and sensors are analyzed. The vibration properties of the disordered two-span beams caused by misplacing the middle support are also researched. In addition, the effects of the length disorder degree on the vibration performances of the disordered beams are investigated. From the numerical results, it can be concluded that the disorder in the length of the periodic two-span beams will cause vibration localizations of the free and forced vibrations of the structure, and the vibration localization phenomenon will be more and more obvious when the length difference between the two sub-beams increases. Moreover, when the velocity feedback control is used, both the forced and the free vibrations will be suppressed. Meanwhile, the vibration behaviors of the two-span beam are tuned.
文摘Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.
基金Supported by the National Natural Science Foundation of China (No. 90716027, 51175319), and Shanghai Talent Development Fund (No.2009020).
文摘A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.
基金supported by the Foundation of National Key Laboratory on Ship Vibration and Noise(No. 614220400307)the National Natural Science Foundation of China(No.11872207)+1 种基金the Aeronautical Science Foundation of China(No. 20180952007)the Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures(No. MCMS-I-0520G01)
文摘In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11332006,11732010,11572221,and 11502066)
文摘An experimental investigation was performed for active control of coherent structure bursting in the near-wall region of the turbulent boundary layer. By means of synchronous and asynchronous vibrations with double piezoelectric vibrators, the influence of periodic vibration of the double piezoelectric vibrators on the mean velocity profile, drag reduction rate, and coherent structure bursting is analyzed at Reo = 2766. The case with 100 V/160 Hz-ASYN is superior to other conditions in the experiment and a relative drag reduction rate of 18.54% is exciting. Asynchronous vibration is more effective than synchronous vibration in drag reduction at the same voltage and frequency. In all controlled cases, coherent structures at large scales are regulated while the small-scale structures are stimulated. The fluctuating velocity increases significantly. A periodic regulating effect on the coherent structure can be seen in the ASYN control conditions at the frequency of 160 Hz.
文摘The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.
基金supported by National Natural Science Foundation of China (Grant No. 50775110, Grant No. 50830201)Program for Changjiang Scholars and Innovative Research Team of China (Grant No. Irt0906)+1 种基金Aeronautical Science Fund of China (Grant No. 20091552017)Jiangsu Provincal Graduate Innovation Program of China (Grant No. CX08B_048Z)
文摘Structural vibration control was an active research area for the past twenty years because of their potential applications in aerospace structures,civil structures,naval structures,etc.Semi-active vibration control methods based on piezoelectric actuators and synchronized switch damping on inductance(SSDI) techniques attract the attention of many researchers recently due to their advantages over passive and active methods.In the SSDI method,a switch shunt circuit is connected to the piezoelectric patch to shift the phase and amplify the magnitude of the voltage on the piezoelectric patch.The most important issue in SSDI method is to control the switching actions synchronously with the maximum vibration displacement or maximum strain.Hence,usually a displacement sensor is used to measure the vibration displacement or a collocated piezoelectric sensor is needed to measure the strain of the structure near the piezoelectric actuator.A self-sensing SSDI approach is proposed and applied to the vibration control of a composite beam,which avoids using a separate sensor.In the self-sensing technique,the same piezoelectric element functions as both a sensor and an actuator so that the total number of required piezoelectric elements can be reduced.One problem in the self-sensing actuator,which is the same as that in the traditional collocated piezoelectric sensors,is the noise generated in the sensor signal by the impact of voltage inversion,which may cause extra switching actions and deteriorate control performance.In order to prevent the shunt circuit from over-frequent on-and-off actions,a simple switch control algorithm is proposed.The results of control experiments show that the self-sensing SSDI approach combined with the improved switch control algorithm can effectively suppress over-frequent switching actions and gives good control performance by reducing the vibration amplitude by 45%,about 50% improvement from the traditional SSDI with a separate piezoelectric element and a classical switch.
基金the National Defense Advanced Research Project(No.41320020302)
文摘In this paper numerical simulations of active vibration control for conical shell structure with dis-tributed piezoelectric actuators is presented.The dynamic equations of conical shell structure are derivedusing the finite element model (FEM) based on Mindlin's plate theory.The results of modal calculationswith FEM model are accurate enough for engineering applications in comparison with experiment results.The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary conditionfor estimating the control force.The independent modal space control (IMSC) method is adopted and theoptimal linear quadratic state feedback control is implemented so that the best control performance withthe least control cost can be achieved.Optimal control effects are compared with controlled responses withother non-optimal control parameters.Numerical simulation results are given to demonstrate the effective-ness of the control scheme.
基金Project supported by the National Natural Science Foundation of China(No.10572049)
文摘Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Hamilton's principle, the higher- order shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations, and the strain energy equivalence theory. A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation. Influence of the piezoelectric layers' location on the vibration control is in- vestigated. In addition, effects of the degree and location of damage on the sensor output voltage are discussed. A method for damage detection is introduced.
基金Project supported by the National Natural Science Foundation of China (Nos. 11172084, 10672017,and 50935002)
文摘The vibration stability and the active control of the parametrically excited nonlinear beam structures are studied by using the piezoelectric material. The velocity feedback control algorithm is used to obtain the active damping. The cubic aonlineax equation of motion with damping is established by employing Hamilton's principle. The multiple-scale method is used to solve the equation of motion, and the stable region is obtained. The effects of the control gain and the amplitude of the external force on the stable region and the amplitude-frequency curve axe analyzed numerically. From the numerical results, it is seen that, with the increase in the feedback control gain, the axial force, to which the structure can be subjected, is increased, and in a certain scope, the structural active damping ratio is also increased. With the increase in the control gain, the response amplitude decreases gradually, but the required control voltage exists a peak value.
文摘A new nonlinear integral resonant controller(NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce highamplitude nonlinear vibration around the fundamental resonance frequency. The method of multiple scales is used to obtain an approximate solution for the closed-loop system.Then closed-loop system stability is investigated using the resulting modulation equation. Finally, the effects of different control system parameters are illustrated and an approximate solution response is verified via numerical simulation results.The advantages and disadvantages of the proposed controller are presented and extensively discussed in the results. The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode,unlike conventional second-order compensation methods.This makes the NIRC controlled system robust to excitation frequency variations.
基金the National Key Laboratory Foundation of China(No.51375229)Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)。
文摘Electrically Controlled Rotor(ECR),also called as swashplateless rotor,applies blade pitch inputs via trailing-edge flaps system instead of traditional swashplate mechanism.In addition to primary control,rotor vibration reduction and noise alleviation are also achievable via applying higher harmonic control inputs with the trailing-edge flaps.In this paper,the feasibility of ECR to reduce vibration and noise actively is verified experimentally.Firstly,the test scheme of ECR active vibration and noise control is proposed,and the ECR test platform is modified according to the test scheme.Then,an adaptive control algorithm based on Kalman filter is developed.Lastly,hover and wind tunnel tests is performed to verify the feasibility of ECR active vibration and noise control.The results demonstrate that the ECR are effective for reducing rotor vibration and noise simultaneously.In the hover condition,the ECR can reduce the in-plane hub vibration by 42%and the inplane noise by 4dB.In wind tunnel condition,ECR can reduce the hub vibration by 75%and the BVI noise by 3dB.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11732010,11972251,11872272,11902218 and 11802195).
文摘In order to manipulate the large-scale coherent structures in the wall-bounded turbulence and reduce the skin-friction,an active-control experimental investigation is performed by using the synchronous and asynchronous vibrations of double piezoelectric vibrators embedded spanwisely on a smooth flat plate surface.A TSI-IFA300 hot-wire anemometer and a TSI-1621 A-Tl.5 hot-wire probe are used to measure the time series of the instantaneous velocity at different locations.The influences of the vibrations on the wall-bounded turbulence are compared in a multi-scale point of view.A disturbance Reynolds Number Red=pd2 f/μis introduced to represent the disturbance.A probability density functions(PDFs)of the multi-scale components of the turbulence velocity and the multi-scale conditional phase-averaged waveform are studied in detail using the wavelet transform.The results show that the maximum drag reduction rate 18.54%is obtained at 100 V/160 Hz and Red=0.54 in the asynchronous vibration mode.The disturbances generated by the vibrators have a significant influence on the sweep events of the burst.The asynchronous vibration model is more effective than the synchronous vibration one.A possible physical mechanism is suggested to explain why the disturbance frequency of 160 Hz leads to an optimal parameter set for the drag reduction.
基金Project supported by the Key Project(No.60934001)the General Projects(Nos.51175181and90505014)of the National Natural Science Foundation of Chinaby the Fundamental Research Funds for the Central Universities,SCUT(No.2012ZZ0060)
文摘This paper aims at modeling and developing vibration control methods for a flexible piezoelectric beam. A collocated sensor/actuator placement is used. Finite element analysis (FEA) method is adopted to derive the dynamics model of the system. A back propagation neural network (BPNN) based proportional-derivative (PD) algorithm is applied to suppress the vibration. Simulation and experiments are conducted using the FEA model and BPNN-PD control law. Experimental results show good agreement with the simulation results using finite element modeling and the neural network control algorithm.
基金Project supported by the National Natural Science Foundation of China(Nos.11502159 and 11390362)Natural Science Foundation of Shanxi(No.2015021014)+4 种基金the Top Young Academic Leaders of High Learning Institutions of ShanxiShanxi Scholarship Council of Chinathe Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provincethe Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry
文摘This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz method, the equation of motion for the resulting electromechani- cal coupling system is derived. A velocity feedback control rule is employed to obtain an effective active damping in the suppression of random vibration. The power spectral density and mean- square displacements of the random vibration for laminated plates under different control gains are simulated and the validity of the present control strategy is confirmed. The effect of piezoelec- tric fiber orientation in the PFRC layer on the random vibration suppression is also investigated. The analytical methodology can be expanded to other kinds of random vibration.
基金This work was supported by DEVISU project which was funded by the Ministero dell’Istruzione,dell’Universitàe della Ricerca,research funding programme PRIN 2017[2017ZX9X4K].
文摘This paper presents a comprehensive overview of the principal features of smart panels equipped with feed-forward and feedback systems for the control of the flexural response and sound transmission due respectively to tonal and to stochastic broadband disturbances.The smart panels are equipped with two types of actuators:first,distributed piezoelectric actuators formed either by small piezoelectric patches or large piezoelectric films bonded on the panels and second,point actuators formed by proof-mass electromagnetic transducers.Also,the panels encompass three types of sensors:first,small capacitive microphone sensors placed in front of the panels;second,distributed piezoelectric sensors formed by large piezoelectric films bonded on the panels and third point sensors formed by miniaturized accelerometers.The proposed systems implement both single-channel and multi-channel feed-forward and feedback control architectures.The study shows that,the vibration and sound radiation control performance of both feed-forward and feedback systems critically depends on the sensor-actuator configurations.
文摘滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法是主动噪声控制系统中常用的算法,对中低频噪声有较好的控制作用,但在某些环境噪声中传统的算法可能达不到期望的抑制效果。提出一种基于sigmoid变换的滤波-x四元数最小均方算法,该算法利用四元数的空间特性使噪声信号在超复数域内部相互耦合和关联,并通过sigmoid函数对误差信号进行非线性变换来约束噪声信号以减低对权值更新的影响力度,避免权值在更新过程中发散,从而实现优异的收敛性能以及增强的鲁棒性。同时通过研究步长分析该算法的稳态特性,并在汽车、工厂噪声环境下验证提出算法性能的优越性,仿真结果支持了该结论。