期刊文献+
共找到72,169篇文章
< 1 2 250 >
每页显示 20 50 100
Insights on advanced substrates for controllable fabrication of photoanodes toward efficient and stable photoelectrochemical water splitting 被引量:2
1
作者 Huilin Hou Gang Shao +2 位作者 Yang Wang Wai‐Yeung Wong Weiyou Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期164-221,共58页
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p... Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed. 展开更多
关键词 hydrogen PHOTOANODE PHOTOELECTROCHEMICAL substrates water splitting
下载PDF
Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering
2
作者 Yawen Zhan Guobin Zhang +8 位作者 Junda Shen Binbin Zhou Chenghao Zhao Junmei Guo Ming Wen Zhilong Tan Lirong Zheng Jian Lu Yang Yang Li 《Nano Materials Science》 EI CAS CSCD 2024年第3期305-311,共7页
Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with... Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M). 展开更多
关键词 ELECTRODEPOSITION DEALLOYING Surface-alloyed Noble metals Surface enhanced Raman spectroscopy substrates
下载PDF
Exploring the mechanisms of calcium carbonate deposition on various substrates with implications for effective anti-scaling material selection
3
作者 Lu Gong Fei-Yi Wu +4 位作者 Ming-Fei Pan Jun Huang Hao Zhang Jing-Li Luo Hong-Bo Zeng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2870-2880,共11页
The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance... The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance to understand the scaling mechanisms and develop efficient anti-scaling strategies.However,the underlying surface interaction mechanisms of scalants(e.g.,calcite)with various substrates are still not fully understood.In this work,the colloidal probe atomic force microscopy(AFM)technique has been applied to directly quantify the surface forces between calcite particles and different metallic substrates,including carbon steel(CR1018),low alloy steel(4140),stainless steel(SS304)and tungsten carbide,under different water chemistries(i.e.,salinity and pH).Measured force profiles revealed that the attractive van der Waals(VDW)interaction contributed to the attachment of the calcium carbonate particles on substrate surfaces,while the repulsive electric double layer(EDL)interactions could inhibit the attachment behaviors.High salinity and acidic p H conditions of aqueous solutions could weaken the EDL repulsion and promote the attachment behavior.The adhesion of calcite particles with CR1018 and4140 substrates was much stronger than that with SS304 and tungsten carbide substrates.The bulk scaling tests in aqueous solutions from an industrial oil production process showed that much more severe scaling behaviors of calcite was detected on CR1018 and 4140 than those on SS304 and tungsten carbide,which agreed with surface force measurement results.Besides,high salinity and acidic p H can significantly enhance the scaling phenomena.This work provides fundamental insights into the scaling mechanisms of calcite at the nanoscale with practical implications for the selection of suitable antiscaling materials in petroleum industries. 展开更多
关键词 Scaling phenomenon Metallic substrates Surface forces Bulk scaling tests
下载PDF
Reshaping Li–Mg hybrid batteries:Epitaxial electrodeposition and spatial confinement on MgMOF substrates via the lattice‐matching strategy
4
作者 Yongqin Wang Fulin Cheng +2 位作者 Jiawen Ji Chenyang Cai Yu Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期248-261,共14页
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem... The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries. 展开更多
关键词 epitaxial electrodeposition lattice‐matching strategy Li-Mg hybrid batteries MOF substrate spatial confinement
下载PDF
Impact of Different Cultivation Substrates on the Growth of Cymbidium goeringii
5
作者 Xuejiao HE Zhicheng YU Shaohua WU 《Plant Diseases and Pests》 2024年第5期40-42,共3页
[Objectives]The paper was to explore the impact of different cultivation substrates on the growth of Cymbidium goeringii.[Methods]The impact of 13 distinct cultivation substrates on the growth of C.goeringii was exami... [Objectives]The paper was to explore the impact of different cultivation substrates on the growth of Cymbidium goeringii.[Methods]The impact of 13 distinct cultivation substrates on the growth of C.goeringii was examined using C.goeringii as the test material.[Results]The combination of burning red clay particles(15%),No.4 pine bark(15%),No.3 pine bark(60%),and perlite(10%),as well as the mixture of burning red clay particles(20%),No.4 pine bark(15%),No.3 pine bark(55%),and perlite(10%),yielded superior results.These formulations resulted in an increased number of new roots in C.goeringii,a reduction in the incidence of decayed roots,and enhancements in the number of tillers,new leaves,and flowers.[Conclusions]The selection of substrates may serve as a valuable reference for the cultivation of C.goeringii. 展开更多
关键词 Cymbidium goeringii substratE GROWTH
下载PDF
Direct Synthesis of Layer-Tunable and Transfer-Free Graphene on Device-Compatible Substrates Using Ion Implantation Toward Versatile Applications
6
作者 Bingkun Wang Jun Jiang +7 位作者 Kevin Baldwin Huijuan Wu Li Zheng Mingming Gong Xuehai Ju Gang Wang Caichao Ye Yongqiang Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期408-418,共11页
Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-st... Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields. 展开更多
关键词 device applications dual-metal smart Janus substrate growth mechanism Ion implantation layer-tunable and transfer-free graphene
下载PDF
Localized-states quantum confinement induced by roughness in CdMnTe/CdTe heterostructures grown on Si(111) substrates
7
作者 Leonarde N.Rodrigues Wesley F.Inoch +3 位作者 Marcos L.F.Gomes Odilon D.D.Couto Jr. Bráulio S.Archanjo Sukarno O.Ferreira 《Journal of Semiconductors》 EI CAS CSCD 2024年第9期28-35,共8页
This work shows that despite a lattice mismatch of almost 20%, CdMnTe/CdTe/CdMnTe heterostructures grown directly on Si(111) have surprisingly good optical emission properties. The investigated structures were grown b... This work shows that despite a lattice mismatch of almost 20%, CdMnTe/CdTe/CdMnTe heterostructures grown directly on Si(111) have surprisingly good optical emission properties. The investigated structures were grown by molecular beam epitaxy and characterized by scanning transmission electron microscopy, macro-and micro-photoluminescence. Low temperature macro-photoluminescence experiments indicate three emission bands which depend on the CdTe layer thickness and have different confinement characteristics. Temperature measurements reveal that the lower energy emission band (at 1.48 eV)is associated to defects and bound exciton states, while the main emission at 1.61 eV has a weak 2D character and the higher energy one at 1.71 eV has a well-defined (zero-dimensional, 0D) 0D nature. Micro-photoluminescence measurements show the existence of sharp and strongly circularly polarized (up to 40%) emission lines which can be related to the presence of Mn in the heterostructure. This result opens the possibility of producing photon sources with the typical spin control of the diluted magnetic semiconductors using the low-cost silicon technology. 展开更多
关键词 CdMnTe/CdTe/CdMnTe heterostructure CdTe/CdMnTe quantum emitters quantum dot-like emission silicon(111)substrate
下载PDF
Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport
8
作者 Shuo Chen Xiaohu Wu Ceji Fu 《Opto-Electronic Science》 2024年第6期1-19,共19页
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ... Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices. 展开更多
关键词 anisotropic phonon polaritons forbidden direction substrate with a negative permittivity near-field energy transport
下载PDF
From mice to humans:a need for comparable results in mammalian neuroplasticity
9
作者 Marco Ghibaudi Enrica Boda Luca Bonfanti 《Neural Regeneration Research》 SCIE CAS 2025年第2期464-466,共3页
Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Over... Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023). 展开更多
关键词 plasticITY al. ARREST
下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
10
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 plasticITY STRUCTURAL MECHANISMS
下载PDF
Plasticity and Interfacial Dislocation Mechanisms in Epitaxial and Polycrystalline Al Films Constrained by Substrates
11
作者 G.Dehm B.J.Inkson 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期113-117,共5页
Stresses in epitaxial and textured Al films were determined by substrate-curvature measurements. It was found that in both cases the flow stresses increase with decreasing film thickness. The flow stresses in the epit... Stresses in epitaxial and textured Al films were determined by substrate-curvature measurements. It was found that in both cases the flow stresses increase with decreasing film thickness. The flow stresses in the epitaxial Al films are in agreement with a dislocation-based model, while the same model strongly underestimates the flow stresses of textured Al films. In-situ transmission electron microscopy studies indicate that dislocations channeling through epitaxial Al films on single-crystalline (0001) α-AI2O3 substrates frequently deposit dislocation segments adjacent to the interface. Furthermore, the AI/α-AI2O3 interface acted as a dislocation source. In this case, the interface is between two crystalline lattices. In contrast, the interface of textured Al films on oxidized silicon substrates is between the crystalline Al and the amorphous SiOx interlayer. It is speculated that the different nature of the interfaces changes dislocation mechanisms and thus influences the flow stresses. 展开更多
关键词 Thin film plasticITY DISLOCATION Interface
下载PDF
Biochemical, functional and antioxidant potential of higher fungi cultivated on agro-industrial residues. Part Ⅱ: Cultures on mixtures of spent mushroom substrates and mushroom cropping by-products
12
作者 Marianna Dedousi Eirini Maria Melanouri +2 位作者 Ilias Diamantis Seraphim Papanikolaou Panagiota Diamantopoulou 《Resources Chemicals and Materials》 2024年第3期175-187,共13页
Novel substrates consisted of different fresh agro-industrial residues,their corresponding and commercial spent mushroom substrates(i.e.SMS deriving from laboratory-scale experiments and SMS deriving from industrial-s... Novel substrates consisted of different fresh agro-industrial residues,their corresponding and commercial spent mushroom substrates(i.e.SMS deriving from laboratory-scale experiments and SMS deriving from industrial-scale experiments by Green Zin S.A.-SMS GZ)and Pleurotus waste(PW;stipes/mishappen mushrooms)were used in blends for a new cultivation cycle of Pleurotus ostreatus and P.eryngii mushrooms in bags.Their impact on the biochemical properties(intra-cellular polysaccharides-IPSs,protein,lipid,total phenolic compounds-TPCs,individual carbohydrates composition of the IPSs)in the first-and second-flush whole mushrooms,pilei and stipes,as well as the fatty acids composition,the antioxidant activity(in the first-flush mushroom parts)and glucan content of stipes were examined.Both species produced satisfactory IPSs quantities in all substrates(28.69-46.38%,w/w)and significant protein amounts(18.37-26.80%,w/w).The further SMS addition(80%,w/w instead of 40%,w/w)in the cultivation substrates affected positively the mushroom IPSs values,whereas the highest protein content was detected in mushroom’s parts cultivated on substrates consisted of fresh agro-industrial residues.Mushroom’s lipid content was affected differently by the various substrate combinations,with SMS presence resulting in mushrooms with a lower fat content than those produced in substrates with PW addition.Fresh substrates with PW and those with coffee residue were the most favorable for TPCs production.Regarding production flushes,the nutritional value of mushrooms was comparable between them,only a slight increase in TPCs of second-flush carposomes was detected.Glucose was the predominant monosaccharide of the produced IPSs,combined with a significant production of total and β-glucans.SMSs and PW addition had a positive impact on antioxidant activity,too.A higher quantity of lipids,TPCs and significant antioxidant activity were detected in all Pleurotus pilei than stipes,whereas the latter were richer in IPSs.Both pilei and stipes had a significant protein amount.Hence,the data obtained by this study support the positive effect of different types of SMS and mushroom waste on P.ostreatus and P.eryngii nutritional value. 展开更多
关键词 PLEUROTUS Agro-industrial residues Spent mushroom substrate Stipes Pilei
下载PDF
Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe-0.1C-5Mnmedium manganese steel
13
作者 Mei Zhang Wenhao Li +3 位作者 Yangfei Chen Yang Jiang Xiaofei Guo Han Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期369-379,共11页
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss... The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase. 展开更多
关键词 medium-Mn steel retained austenite progressive transformation-induced plasticity effect local strain fracture initiation
下载PDF
Neurogenesis dynamics in the olfactory bulb:deciphering circuitry organization, function, and adaptive plasticity
14
作者 Moawiah M.Naffaa 《Neural Regeneration Research》 SCIE CAS 2025年第6期1565-1581,共17页
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh... Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior. 展开更多
关键词 network adaptability NEUROGENESIS neuronal communication olfactory bulb olfactory learning olfactory memory synaptic plasticity
下载PDF
The interaction between KIF21A and KANK1 regulates dendritic morphology and synapse plasticity in neurons
15
作者 Shi-Yan Sun Lingyun Nie +5 位作者 Jing Zhang Xue Fang Hongmei Luo Chuanhai Fu Zhiyi Wei Ai-Hui Tang 《Neural Regeneration Research》 SCIE CAS 2025年第1期209-223,共15页
Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th... Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function. 展开更多
关键词 ACTIN CYTOSKELETON dendrite KANK1 KIF21A MICROTUBULE spine morphology SPINE synaptic plasticity talin1
下载PDF
Practice patterns among ophthalmic surgeons in treating concomitant oculoplastic conditions in preoperative period:A questionnaire-based study
16
作者 Bijnya Birajita Panda Chitaranjan Mishra +3 位作者 Bhagabat Nayak Avik Kumar Roy Logesh Balakrishnan Priyadarshini Mishra 《World Journal of Clinical Cases》 SCIE 2025年第1期29-37,共9页
BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have ... BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections. 展开更多
关键词 Oculoplasty Ophthalmic plastic surgery Nasolacrimal duct obstruction Practice patterns SURVEY
下载PDF
Microplastic and nanoplastic exposure and risk of diabetes mellitus
17
作者 Hui-Yi Hsiao Chung-Yi Nien +2 位作者 Ruei-Feng Shiu Wei-Chun Chin Tzung-Hai Yen 《World Journal of Clinical Cases》 SCIE 2025年第3期24-29,共6页
The issue of plastic pollutants has become a growing concern.Both microplastics(MPs)(particle size<5 mm)and nanoplastics(NPs)(particle size<1μm)can cause DNA damage,cytotoxicity,and oxidative stress in various ... The issue of plastic pollutants has become a growing concern.Both microplastics(MPs)(particle size<5 mm)and nanoplastics(NPs)(particle size<1μm)can cause DNA damage,cytotoxicity,and oxidative stress in various organisms.The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system,leading to hepatotoxicity and chronic obstructive pulmonary disease.Although research on the effects of MPs and NPs on diabetes is still in its early stages,there are potential concerns.This editorial highlights the risk to diabetics from co-exposure to contaminants and MPs/NPs,supported by evidence from animal studies and the various chemical compositions of MPs/NPs. 展开更多
关键词 Microplastics Nanoplastics plastic pollution Diabetes mellitus Insulin resistance
下载PDF
Microstructure evolution of 7050 aluminum forgings during surface cumulative plastic deformation
18
作者 Jian-liang HU Ze-xiong ZHANG +3 位作者 Cheng XING Xiu-jiang WU Shi-quan HUANG Hong BO 《中国有色金属学报》 北大核心 2025年第1期45-59,共15页
To elucidate the mechanisms of regulating the microstructure uniformity in 7050 aluminum forgings through surface cumulative plastic deformation(SCPD),the microstructure under different solution treatments was investi... To elucidate the mechanisms of regulating the microstructure uniformity in 7050 aluminum forgings through surface cumulative plastic deformation(SCPD),the microstructure under different solution treatments was investigated using metallographic observation(OM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and X-ray diffraction(XRD).The findings demonstrate that the most uniform microstructure in the forgings is achieved with a solution treatment at 470℃for 30 min.The SCPD process generates a significant number of needle-shaped precipitates,resulting in a higher dislocation density and stored energy.Solution treatments alleviate the pinning effect of second-phase particles and facilitate static recrystallization(SRX)in forgings,leading to a reduction in grain size.Additionally,mechanical testing results demonstrate 7%−13%increase in tensile strength and more uniform elongation of the forgings in different directions. 展开更多
关键词 microstructure homogeneity surface cumulative plastic deformation(SCPD) static recrystallization(SRX) dislocation density
下载PDF
Extracellular vesicles:multiple signaling capabilities and translation into promising therapeutic targets to promote neuronal plasticity
19
作者 Dirk M.Hermann Bernd Giebel 《Neural Regeneration Research》 2025年第12期3521-3522,共2页
Extracellular vesicles(EVs)are cell-derived,lipid membrane-enclosed vesicles carrying a broad spectrum of biologically active molecules(including proteins,RNAs,and bioactive lipids)which play important roles in interc... Extracellular vesicles(EVs)are cell-derived,lipid membrane-enclosed vesicles carrying a broad spectrum of biologically active molecules(including proteins,RNAs,and bioactive lipids)which play important roles in intercellular communication.EVs crucially control neuronal energy metabolism under physiological conditions,constrain oxidative stress a nd brain inflammatory responses,and promote neuronal survival and plasticity upon brain damage. 展开更多
关键词 plasticITY OXIDATIVE SPECTRUM
下载PDF
Nerve root magnetic stimulation regulates the synaptic plasticity of injured spinal cord by ascending sensory pathway
20
作者 Ya Zheng Lingyun Cao +7 位作者 Dan Zhao Qi Yang Chunya Gu Yeran Mao Guangyue Zhu Yulian Zhu Jing Zhao Dongsheng Xu 《Neural Regeneration Research》 2025年第12期3564-3573,共10页
Promoting synaptic plasticity and inducing functional reorganization of residual nerve fibers hold clinical significance for restoring motor function following spinal cord injury.Neuromagnetic stimulation targeting th... Promoting synaptic plasticity and inducing functional reorganization of residual nerve fibers hold clinical significance for restoring motor function following spinal cord injury.Neuromagnetic stimulation targeting the nerve roots has been shown to improve motor function by enhancing nerve conduction in the injured spinal cord and restoring the synaptic ultrastructure of both the sensory and motor cortex.However,our understanding of the neurophysiological mechanisms by which nerve root magnetic stimulation facilitates motor function recovery in the spinal cord is limited,and its role in neuroplasticity remains unclear.In this study,we established a model of spinal cord injury in adult male Sprague–Dawley rats by applying moderate compression at the T10 vertebra.We then performed magnetic stimulation on the L5 nerve root for 3 weeks,beginning on day 3 post-injury.At day 22 post-injury,we observed that nerve root magnetic stimulation downregulated the level of interleukin-6 in the injured spinal cord tissue of rats.Additionally,this treatment reduced neuronal damage and glial scar formation,and increased the number of neurons in the injured spinal cord.Furthermore,nerve root magnetic stimulation decreased the levels of acetylcholine,norepinephrine,and dopamine,and increased the expression of synaptic plasticity-related m RNA and proteins PSD95,GAP43,and Synapsin II.Taken together,these results showed that nerve root magnetic stimulation alleviated neuronal damage in the injured spinal cord,regulated synaptic plasticity,and suppressed inflammatory responses.These findings provide laboratory evidence for the clinical application of nerve root magnetic stimulation in the treatment of spinal cord injury. 展开更多
关键词 DENDRITE inflammation magnetic stimulation nerve root neurological function neuronal damage NEUROTRANSMITTER spinal cord injury synaptic plasticity synaptic transmission
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部